Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 2653, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992961

RESUMEN

Nanostructures based on buried interfaces and heterostructures are at the heart of modern semiconductor electronics as well as future devices utilizing spintronics, multiferroics, topological effects, and other novel operational principles. Knowledge of electronic structure of these systems resolved in electron momentum k delivers unprecedented insights into their physics. Here we explore 2D electron gas formed in GaN/AlGaN high-electron-mobility transistor heterostructures with an ultrathin barrier layer, key elements in current high-frequency and high-power electronics. Its electronic structure is accessed with angle-resolved photoelectron spectroscopy whose probing depth is pushed to a few nanometers using soft-X-ray synchrotron radiation. The experiment yields direct k-space images of the electronic structure fundamentals of this system-the Fermi surface, band dispersions and occupancy, and the Fourier composition of wavefunctions encoded in the k-dependent photoemission intensity. We discover significant planar anisotropy of the electron Fermi surface and effective mass connected with relaxation of the interfacial atomic positions, which translates into nonlinear (high-field) transport properties of the GaN/AlGaN heterostructures as an anisotropy of the saturation drift velocity of the 2D electrons.

2.
Biofabrication ; 9(2): 025029, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28462910

RESUMEN

We report on the fabrication of silicon-reinforced carbon (C:Si) structures by combinatorial pulsed laser deposition to search for the best design for a new generation of multi-functional coated implants. The synthesized films were characterized from the morphological, structural, compositional, mechanical and microbiological points of view. Scanning electron microscopy revealed the presence, on top of the deposited layers, of spheroid particulates with sizes in the micron range. No micro-cracks or delaminations were observed. Energy dispersive x-ray spectroscopy and grazing incidence x-ray diffraction pointed to the existence of a C to Si compositional gradient from one end of the film to the other. Raman investigation revealed a relatively high sp3 hybridization of up to 80% at 40-48 mm apart from the edge with higher C content. Si addition was demonstrated to significantly increase C:Si film bonding to the substrate, with values above the ISO threshold for coatings to be used in high-loading biomedical applications. Surface energy studies pointed to an increase in the hydrophilic character of the deposited structures along with Si content up to 52 mN m-1. In certain cases, the Si-reinforced C coatings elicited an antimicrobial biofilm action. The presence of Si was proven to be benign to HEp-2 cells of human origin, without interfering with their cellular cycle. On this basis, reliable C:Si structures with good adherence to the substrate and high efficiency against microbial biofilms can be developed for implant coatings and other advanced medical devices.


Asunto(s)
Tecnología Biomédica/métodos , Carbono/química , Materiales Biocompatibles Revestidos/química , Rayos Láser , Silicio/química , Ciclo Celular , Forma de la Célula , Humanos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Espectrometría Raman , Propiedades de Superficie , Agua/química , Difracción de Rayos X
3.
Int J Nanomedicine ; 12: 683-707, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28176941

RESUMEN

Synthetic physiological fluids are currently used as a first in vitro bioactivity assessment for bone grafts. Our understanding about the interactions taking place at the fluid-implant interface has evolved remarkably during the last decade, and does not comply with the traditional International Organization for Standardization/final draft International Standard 23317 protocol in purely inorganic simulated body fluid. The advances in our knowledge point to the need of a true paradigm shift toward testing physiological fluids with enhanced biomimicry and a better understanding of the materials' structure-dissolution behavior. This will contribute to "upgrade" our vision of entire cascades of events taking place at the implant surfaces upon immersion in the testing media or after implantation. Starting from an osteoinductive bioglass composition with the ability to alleviate the oxidative stress, thin bioglass films with different degrees of polymerization were deposited onto titanium substrates. Their biomineralization activity in simulated body fluid and in a series of new inorganic-organic media with increasing biomimicry that more closely simulated the human intercellular environment was compared. A comprehensive range of advanced characterization tools (scanning electron microscopy; grazing-incidence X-ray diffraction; Fourier-transform infrared, micro-Raman, energy-dispersive, X-ray photoelectron, and surface-enhanced laser desorption/ionization time-of-flight mass spectroscopies; and cytocompatibility assays using mesenchymal stem cells) were used. The information gathered is very useful to biologists, biophysicists, clinicians, and material scientists with special interest in teaching and research. By combining all the analyses, we propose herein a step forward toward establishing an improved unified protocol for testing the bioactivity of implant materials.


Asunto(s)
Biomimética/métodos , Líquidos Corporales/efectos de los fármacos , Cerámica/farmacología , Materiales Biocompatibles Revestidos/farmacología , Prótesis e Implantes , Líquidos Corporales/química , Carbonato de Calcio/química , Fosfatos de Calcio/química , Durapatita/química , Electrodos , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Microscopía Electrónica de Rastreo , Polvos , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Propiedades de Superficie , Difracción de Rayos X
4.
Phys Rev Lett ; 119(25): 256404, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29303315

RESUMEN

Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit-coupled SrIrO_{3} ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various levels of complexity we identify the leading microscopic mechanisms, i.e., a dimensionality-induced readjustment of octahedral rotations, magnetism, and electronic correlations. The astonishing resemblance of the band structure in the two-dimensional limit to that of bulk Sr_{2}IrO_{4} opens new avenues to unconventional superconductivity by "clean" electron doping through electric field gating.

5.
J Mater Sci Mater Med ; 26(1): 5333, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25578691

RESUMEN

We report on thin film deposition by matrix-assisted pulsed laser evaporation of simple hydroxyapatite (HA) or silver (Ag) doped HA combined with the natural biopolymer organosolv lignin (Lig) (Ag:HA-Lig). Solid cryogenic target of aqueous dispersions of Ag:HA-Lig composite and its counterpart without silver (HA-Lig) were prepared for evaporation using a KrF* excimer laser source. The expulsed material was assembled onto TiO2/Ti substrata or silicon wafers and subjected to physical-chemical investigations. Smooth, uniform films adherent to substratum were observed. The chemical analyses confirmed the presence of the HA components, but also evidenced traces of Ag and Lig. Deposited HA was Ca deficient, which is indicative of a film with increased solubility. Recorded X-ray Diffraction patterns were characteristic for amorphous films. Lig presence in thin films was undoubtedly proved by both X-ray Photoelectron and Fourier Transform Infra-Red Spectroscopy analyses. The microbiological evaluation showed that the newly assembled surfaces exhibited an inhibitory activity both on the initial steps of biofilm forming, and on mature bacterial and fungal biofilm development. The intensity of the anti-biofilm activity was positively influenced by the presence of the Lig and/or Ag, in the case of Staphylococcus aureus, Pseudomonas aeruginosa and Candida famata biofilms. The obtained surfaces exhibited a low cytotoxicity toward human mesenchymal stem cells, being therefore promising candidates for fabricating implantable biomaterials with increased biocompatibility and resistance to microbial colonization and further biofilm development.


Asunto(s)
Durapatita/química , Lignina/química , Plata/química , Biopelículas , Rayos Láser , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
6.
J Mater Sci Mater Med ; 24(12): 2695-707, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23943017

RESUMEN

Radio-frequency Plasma Enhanced Chemical Vapour Deposition (in different methane dilutions) was used to synthesize adherent and haemocompatible diamond-like carbon (DLC) films on medical grade titanium substrates. The improvement of the adherence has been achieved by interposing a functional buffer layer with graded composition TixTiC1-x (x = 0-1) synthesized by magnetron co-sputtering. Bonding strength values of up to ~67 MPa have been measured by pull-out tests. Films with different sp(3)/sp(2) ratio have been obtained by changing the methane concentration in the deposition chamber. Raman spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction were employed for the physical-chemical characterization of the samples. The highest concentration of sp(3)-C (~87 %), corresponding to a lower DLC surface energy (28.7 mJ/m(2) ), was deposited in a pure methane atmosphere. The biological response of the DLC films was assayed by a state-of-the-art biological analysis method (surface enhanced laser desorption/ionization-time of flight mass spectroscopy), in conjunction with other dedicated testing techniques: Western blot and partial thromboplastin time. The data support a cause-effect relationship between sp(3)-C content, surface energy and coagulation time, as well as between platelet-surface adherence properties and protein adsorption profiles.


Asunto(s)
Carbono/química , Materiales Biocompatibles Revestidos/química , Diamante/química , Adsorción , Humanos , Espectrometría de Masas , Ensayo de Materiales , Metano/química , Tiempo de Tromboplastina Parcial , Espectroscopía de Fotoelectrones , Adhesividad Plaquetaria , Espectrometría Raman , Propiedades de Superficie , Titanio/química , Difracción de Rayos X
7.
J Mater Sci Mater Med ; 22(12): 2693-710, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21915698

RESUMEN

Thin (380-510 nm) films of a low silica content bioglass with MgO, B(2)O(3), and CaF(2) as additives were deposited at low-temperature (150°C) by radio-frequency magnetron sputtering onto titanium substrates. The influence of sputtering conditions on morphology, structure, composition, bonding strength and in vitro bioactivity of sputtered bioglass films was investigated. Excellent pull-out adherence (~73 MPa) was obtained when using a 0.3 Pa argon sputtering pressure (BG-a). The adherence declined (~46 MPa) upon increasing the working pressure to 0.4 Pa (BG-b) or when using a reactive gas mixture (~50 MPa). The SBF tests clearly demonstrated strong biomineralization features for all bioglass sputtered films. The biomineralization rate increased from BG-a to BG-b, and yet more for BG-c. A well-crystallized calcium hydrogen phosphate-like phase was observed after 3 and 15 days of immersion in SBF in all bioglass layers, which transformed monotonously into hydroxyapatite under prolonged SBF immersion. Alkali and alkali-earth salts (NaCl, KCl and CaCO(3)) were also found at the surface of samples soaked in SBF for 30 days. The study indicated that features such as composition, structure, adherence and bioactivity of bioglass films can be tailored simply by altering the magnetron sputtering working conditions, proving that this less explored technique is a promising alternative for preparing implant-type coatings.


Asunto(s)
Fosfatos de Calcio/química , Cerámica/química , Durapatita/química , Dióxido de Silicio/química , Titanio/química , Líquidos Corporales , Materiales Biocompatibles Revestidos/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones , Presión , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA