Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Genet Mol Biol ; 42(1): 40-47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30672978

RESUMEN

Gene expression is tightly regulated in time and space through a multitude of factors consisting of signaling molecules. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNARE) are membrane proteins responsible for the intercellular trafficking of signals through endocytosis and exocytosis of vesicles. Altered expression of SNARE proteins in cellular communication is the major hallmark of cancer phenotypes as indicated in recent studies. SNAREs play an important role in maintaining cell growth and epithelial membrane permeability of the bladder and are not only involved in cancer progression but also metastatic cell invasion through SNARE-mediated trafficking. Synaptobrevin2/Vesicle associated membrane protein-2 (v-SNARE) and Syntaxin (t-SNARE) form a vesicular docking complex during endocytosis. Some earlier studies have shown a critical role of SNARE in colon, lungs, and breast cancer progression and metastasis. In this study, we analyzed the relative expression of the STX1A and VAMP2 (SYB2) for their possible association in the progression and metastasis of bladder cancer. The profiling of the genes showed a significant increase in STX1A and VAMP2 expression (p < 0.001) in high-grade tumor cells compared to normal and low-grade tumors. These findings suggest that elevated expression of STX1A and VAMP2 might have caused the abnormal progression and invasion of cancer cells leading to the transformation of cells into high-grade tumor in bladder cancer.

2.
Genet Mol Biol ; 41(3): 570-577, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30044465

RESUMEN

Paraoxonase 1 (PON1) is a serum enzyme associated with high density lipoprotein (HDL) regulation through its paraoxonase and arylesterase activity. PON1 inhibits the oxidation of HDL and low density lipoprotein (LDL), and is involved in the pathogenesis of a variety of diseases including atherosclerosis. Conversely, mutations in the low density lipoprotein receptor (LDLR) result in failure of receptor mediated endocytosis of LDL leading to its elevated plasma levels and onset of familial hypercholesterolemia (FH). In the current study we investigated the role of PON1 polymorphisms rs662; c.575A > G (p.Gln192Arg) and rs854560; c.163T > A (p.Leu55Met) in a large family having FH patients harboring a functional mutation in LDLR. Genotypes were revealed by RFLP, followed by confirmation through Sanger sequencing. PON1 activity was measure by spectrophotometry. Our results show significantly reduced serum paraoxonase and arylesterase activities in FH patients compared with the healthy individuals of the family (p < 0.05). PON1 QQ192 genotype showed a significantly higher association with FH (p=0.0002). PON1 Q192 isoform was associated with reduced serum paraoxonase activity by in silico analysis and PON1 R192 exhibited higher serum paraoxonase and arylesterase activity than the other polymorphs. Our results highlight that the combination of LDLR mutations and PON1 MMQQ genotypes may lead to severe cardiac events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA