Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 132146, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734342

RESUMEN

In this research, a sitagliptin-lignin biopolymer (SL) containing zinc selenide quantum dots (ZnSe QDs) and doxorubicin (doxo) was synthesized. The fabricated polymeric drug delivery system was characterized via FTIR, XRD, SEM, TGA, IR, and DSC. SLQD-Doxo exhibited an irregular surface with a 32 nm diameter and well-defined surface chemistry. Drug loading efficiency was assessed at different concentrations, pH levels, time intervals, and temperatures, and drug kinetics were calculated. Maximum drug release was observed at 6 µmol concentration after 24 h, pH of 6.5 and 45 °C. The maximum drug encapsulation efficiency was 81.75 %. SLQD-Doxo demonstrated 24.4 ± 1.04 % anti-inflammatory activity, and the maximum lipoxygenase inhibition in a concentration-dependent manner was 71.45 ± 2.02 %, compared to indomethacin, a standard anticancer drug. The designed system was applied to breast cancer MCF-7 cells to evaluate anticancer activity. Cytotoxicity of SLQD-Doxo resulted in 24.48 ± 1.64 dead cells and 74.39 ± 4.12 viable cells. Lignin's polyphenolic nature resulted in good antioxidant activity of LLQD-Doxo. The combination of SLQD-Doxo was appropriate for drug delivery at high temperatures and acidic pH of tumor cells compared to healthy cells.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Lignina , Fosfato de Sitagliptina , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Humanos , Lignina/química , Lignina/farmacología , Células MCF-7 , Fosfato de Sitagliptina/química , Fosfato de Sitagliptina/farmacología , Liberación de Fármacos , Portadores de Fármacos/química , Polímeros/química , Puntos Cuánticos/química , Concentración de Iones de Hidrógeno , Antioxidantes/farmacología , Antioxidantes/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Supervivencia Celular/efectos de los fármacos
2.
Eur J Pharm Biopharm ; 200: 114312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735345

RESUMEN

BACKGROUND: Nanomedicine, as the combination of radiopharmaceutical and nanocarrier (QDs), is developed for treating cancer. Gallic acid is antimutagenic, anti-inflammatory, and anti-carcinogenic. Typical retention time of gallic acid is approximately 4 to 8 h. To increase the retention time gallic acid is converted to prodrug by adding lipophilic moieties, encapsulating in lipophilic nanoparticles, or liposome formation. Similarly, thymoquinone is powerful antioxidant, anti-apoptotic, and anti-inflammatory effect, with reduced DNA damage. METHODS: In this study, a hydrophilic drug (gallic acid) is chemically linked to the hydrophobic drug (thymohydroquinone) to overcome the limitations of co-delivery of drugs. Thymohydroquinone (THQG) as the combination of gallic acid (GA) and thymoquinone (THQ) is loaded onto the PEI functionalized antimonene quantum dots (AM-QDs) and characterized by FTIR, UV-visible spectroscopy, X-ray powder diffraction, Zeta sizer, SEM and AFM, in-vitro and in-vivo assay, and hemolysis. RESULTS: The calculated drug loading efficiency is 90 %. Drug release study suggests the drug combination is pH sensitive and it can encounters acidic pH, releasing the drug from the nanocarrier. The drug and drug-loaded nanocarrier possesses low cytotoxicity and cell viability on MCF-7 and Cal-27 cell lines. The proposed drug delivery system is radiolabeled with Iodine-131 (131I) and Technetium (99mTc) and its deposition in various organs of rats' bodies is examined by SPECT-CT and gamma camera. Hemolytic activity of 2, 4, 6, and 8 µg/mL is 1.78, 4.16, 9.77, and 15.79 %, respectively, reflecting low levels of hemolysis. The system also sustains oxidative stress in cells and environment, decreasing ROS production to shield cells and keep them healthy. CONCLUSIONS: The results of this study suggest that the proposed drug carrier system can be used as a multi-modal theragnostic agent in cancer treatment.


Asunto(s)
Ácido Gálico , Puntos Cuánticos , Animales , Ratas , Ácido Gálico/química , Ácido Gálico/farmacología , Puntos Cuánticos/química , Humanos , Concentración de Iones de Hidrógeno , Benzoquinonas/química , Benzoquinonas/administración & dosificación , Benzoquinonas/farmacología , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Portadores de Fármacos/química , Liberación de Fármacos , Nanomedicina Teranóstica/métodos , Línea Celular Tumoral , Masculino , Células MCF-7 , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos
3.
Langmuir ; 40(11): 5639-5650, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38447102

RESUMEN

Superhydrophobic textiles with multifunctional characteristics are highly desired and have attracted tremendous research attention. This research employs a simple dip-coating method to obtain a fluorine-free silica-based superhydrophobic and superoleophilic cotton fabric. Pristine cotton fabric is coated with SiO2 nanoparticles and octadecylamine. SiO2 nanoparticles are anchored on the cotton fabric to increase surface roughness, and octadecyl amine lowers the surface energy, turning the hydrophilic cotton fabric into superhydrophobic. The designed cotton fabric exhibits a water contact angle of 159° and a sliding angle of 7°. The prepared cotton fabric is characterized by attenuated total reflectance-fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. In addition, the coated fabric reveals excellent features, including mechanical and chemical stability, superhydrophobicity, superoleophilicity, and the self-cleaning ability. SiO2 nanoparticles and octadecylamine-coated cotton fabric demonstrate exceptional oil-water separation and wastewater remediation performance by degrading the methylene blue solution up to 89% under visible light. The oil-water separation ability is tested against five different oils with more than 90% separation efficiency. This strategy has the advantages of low-cost precursors, a simple and scalable coating method, enhanced superhydrophobicity and superoleophilicity, self-cleaning ability, efficient oil-water separation, and exceptional wastewater remediation performance.

4.
Mikrochim Acta ; 191(3): 164, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413405

RESUMEN

A reliable, rapid, and inexpensive nano-sized chemosensor is presented for methamidophos (MET) - an insecticide. Poly(lactic acid) (PLA)-stabilized gold nanoparticles (AuNPs) were synthesized by a simple one-pot, two-phase chemical reduction method. The synthesized PLA-AuNPs were subsequently employed for selective, efficient, and quantitative detection of MET. MET is one of the highly toxic pesticides used for eradication of agricultural and urban insects. Upon the addition of MET, the wine-red color of PLA-AuNPs swiftly transformed into greyish-blue, further corroborated by a significant bathochromic and hyperchromic shift in the SPR band. The presence of other interfering insecticides, metal salts, and drugs did not have any pronounced effect on quantitative MET detection. The detection limit, the quantification limit, and linear dynamic range of MET utilizing PLA-AuNPs were  0.0027 µM, 0.005 µM, and 0.005-1000 µM, respectively. The PLA-AuNP-based assay renders an efficient, rapid, accurate, and selective quantification of MET in food, biological, and environmental samples. The proposed sensor provides an appropriate platform for fast and on-the-spot determination of MET without requiring a well-equipped lab setup.


Asunto(s)
Insecticidas , Nanopartículas del Metal , Compuestos Organotiofosforados , Oro , Insecticidas/análisis , Colorimetría/métodos , Poliésteres
5.
Chemosphere ; 352: 141280, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278447

RESUMEN

Novel 2D layered MXene materials were first reported in 2011 at Drexel University. MXenes are widely used in multidisciplinary applications due to their anomalous electrical conductivity, high surface area, and chemical, mechanical, and physical properties. This review summarises MXene synthesis and applications in environmental sensing. The first section describes different methods for MXene synthesis, including fluorinated and non-fluorinated methods. MXene's layered structure, surface terminal groups, and the space between layers significantly impact its properties. Different methods to separate different MXene layers are also discussed using various intercalation reagents and commercially synthesized MXene without compromising the environment. This review also explains the effect of MXene's surface functionalization on its characteristics. The second section of the review describes gas and pesticide sensing applications of Mxenes and its composites. Its good conductivity, surface functionalization with negatively charged groups, intrinsic chemical nature, and good mechanical stability make it a prominent material for room temperature sensing of environmental samples, such as polar and nonpolar gases, volatile organic compounds, and pesticides. This review will enhance the young scientists' knowledge of MXene-based materials and stimulate their diversity and hybrid conformation in environmental sensing applications.


Asunto(s)
Gases , Plaguicidas , Elementos de Transición , Humanos , Conductividad Eléctrica , Nitritos
6.
Inflammopharmacology ; 32(2): 1333-1351, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37994993

RESUMEN

Biocompatible anti-inflammatory lignin-capped Ag (LCAg) nanoparticles (NPs) were synthesized for the delivery of galloyl ß-sitosterol (Galloyl-BS). ß-Sitosterol (BS) is effective against inflammatory responses, like cancer-induced inflammations. BS was modified via gallic acid esterification to enhance its anti-inflammatory potential. LCAg NPs were synthesized by a green method and loaded with galloyl-BS. For comparison, pure BS was also loaded onto LCAg NPs in a separate assembly. The antioxidant potential of Galloyl-BS was greater (IC50 177 µM) than pure BS. Materials were characterized by FT-IR, SEM, XRD, and Zeta potential. Using UV-Vis spectroscopy, drug release experiments were performed by varying pH, time, concentration, and temperature. Maximum drug release was observed after 18 h at pH 6 and 40 °C. Galloyl-BS showed improved drug loading efficiency, release %age, and antioxidant activity compared to pure BS when loaded onto LCAg NPs. DLCAg exhibited excellent anti-inflammatory activity in rat models. These findings indicate that galloyl-BS (drug)-loaded LCAg (DLCAg) NPs have the potential as an anti-inflammatory agent without any prior release and scavenging in normal cells.


Asunto(s)
Lignina , Nanopartículas del Metal , Sitoesteroles , Ratas , Animales , Lignina/farmacología , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología
7.
Food Chem ; 438: 137970, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37988934

RESUMEN

Gelatin is a water-soluble protein obtained from the collagen of various animal origins (porcine, bovine, fish, donkey, horse, and deer hide) and has diverse applications in the food, pharmaceutical, and cosmetics industries. Porcine and bovine gelatins are extensively used in food and non-food products; however, their acceptance is limited due to religious prohibitions, whereas fish gelatin is accepted in all religions. In Southeast Asia, especially in China, gelatin obtained from donkey and deer skins is used in medicines. However, both sources suffer from adulteration (mixing different sources of gelatin) due to their limited availability and high cost. Unclear labeling and limited information about actual gelatin sources in gelatin-containing products cause serious concern among societies for halal and fraud authentication of gelatin sources. Therefore, authenticating gelatin sources in gelatin-based products is challenging due to close similarities between the composition differences and degradation of DNA and protein biomarkers in processed gelatin. Thus, different methods have been proposed to identify and quantify different gelatin sources in pharmaceutical and food products. To the best of our knowledge, this systematic and comprehensive review highlights different authentication techniques and their limitations in gelatin detection and quantification in various commercial products. This review also describes halal authentication and adulteration prevention strategies of various gelatin sources, mainly focussing on research gaps, challenges, and future directions in this research area.


Asunto(s)
Gelatina , Animales , Bovinos , Ciervos , Equidae , Peces , Alimentos , Gelatina/análisis , Caballos , Porcinos
8.
ACS Appl Mater Interfaces ; 16(1): 1688-1704, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38110286

RESUMEN

Fluorescent metal-organic frameworks (MOFs) are promising sensing materials with tunable and robust structural properties and remarkable luminescent capabilities. In this study, a novel dual-emission fluorescent metal-organic framework (EY@MOF-5) composite is synthesized by a one-pot bottle-around-ship approach. Eosin Y (EY) is encapsulated in MOF-5 to enhance its fluorescence properties and selectivity, effectively addressing typical MOF-5 limitations. EY@MOF-5 serves as a versatile dual-functional fluorescent sensor for two different analytes, daclatasvir (DCT) and nitenpyram (NTP), showing an impressive linear range of 10-200 nM and 0.1-300 µM, with detection limits of 233 pM and 65 nM, respectively. The established method is ultrafast, highly sensitive, and extremely selective for DCT and NTP detection in complex biological and food samples. Fluorescence results are compared and validated with the recommended UPLC method. Then, a smartphone-integrated sensing system is introduced for on-site, real-time, and quantitative analysis of DCT and NTP. The smartphone-assisted intelligent sensing method manifests promising results for DCT and NTP monitoring in biological and food samples, demonstrating its promising potential for the on-site detection of biologically and environmentally significant analytes.

9.
Nanoscale Adv ; 5(19): 5214-5255, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37767045

RESUMEN

The present review focuses on the widely used graphitic carbon nitride (g-C3N4)-tungsten oxide (WO3) nanocomposite in photocatalytic applications. These catalysts are widely employed due to their easy preparation, high physicochemical stability, nontoxicity, electron-rich properties, electronic band structure, chemical stability, low cost, earth-abundance, high surface area, and strong absorption capacity in the visible range. These sustainable properties make them predominantly attractive and unique from other photocatalysts. In addition, graphitic carbon nitride (g-C3N4) is synthesized from nitrogen-rich precursors; therefore, it is stable in strong acid solutions and has good thermal stability up to 600 °C. This review covers the historical background, crystalline phases, density-functional theory (DFT) study, synthesis method, 0-D, 1-D, 2-D, and 3-D materials, oxides/transition/nontransition metal-doped, characterization, and photocatalytic applications of WO3/g-C3N4. Enhancing the catalytic performance strategies such as composite formation, element-doping, heterojunction construction, and nanostructure design are also summarized. Finally, the future perspectives and challenges for WO3/g-C3N4 composite materials are discussed to motivate young researchers and scientists interested in developing environment-friendly and efficient catalysts.

10.
Langmuir ; 39(33): 11571-11581, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37549018

RESUMEN

Superhydrophobic cotton fabrics with multifunctional features are highly desired in domestic and outdoor applications. However, the short coating longevity and hazardous reagents significantly reduce their commercial-scale applications. Herein, we introduce CeO2 nanoparticles and stearic acid (SA) to develop a fluorine-free, durable superhydrophobic cotton fabric that mimics the lotus effect. The pristine cotton fabric is treated with APTES-functionalized CeO2 nanoparticles by immersion followed by a dip and drying treatment with a 2% myristic acid solution. This sequential process creates a stable superhydrophobic cotton fabric (SA/CeO2-cotton fabric) with a water contact angle of 158° and a water sliding angle of 5°. The results are attributed to the combined effect of CeO2 nanoparticles and stearic acid that enhances surface roughness and reduces surface sorption energy. APTES facilitates the durable attachment of CeO2 nanoparticles and stearic acid to the cotton fabric. The modified cotton fabric is characterized by advanced analytical tools, demonstrating enhanced superhydrophobicity, self-cleaning, and antiwater absorption properties. Additionally, it exhibits remarkable UV-blocking (UPF 542) and antibacterial properties. The designed superhydrophobic cotton fabric unveils good mechanical, thermal, and chemical durability. The proposed strategy is simple, green, and economical and can be used commercially for functional fabric preparation.

11.
Food Chem ; 429: 136925, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37480777

RESUMEN

Permethrin is a pyrethroid pesticide and insect repellent that prevents mosquito-borne infections like dengue and malaria in tropical areas. This work describes a new colorimetric sensor based on metronidazole-stabilized silver nanoparticles (MTZ-AgNPs) for the first rapid, sensitive, and selective permethrin detection. The MTZ-AgNPs-based colorimetric sensor has a limit of detection (LOD) of 0.0104 µM and a limit of quantification (LOQ) of 0.0348 µM, respectively. The sensor is further integrated with smartphone and microfluidic fabrication of paper-based analytical devices (µPADs) for real-time and on-site detection of permethrin. Under optimal settings, no potential environmental contaminants interfere with permethrin detection, confirming its high selectivity. Finally, the practical applicability of sensors is confirmed in real tomato and apple extract samples. The US environmental protection agency's recommended UPLC method validated the detection efficiency of the proposed colorimetric sensor. The % recoveries from UPLC and MTZ-AgNPs suggest that the present sensor can quantitatively analyze permethrin in real samples.


Asunto(s)
Nanopartículas del Metal , Permetrina , Estados Unidos , Animales , Colorimetría , Microfluídica , Teléfono Inteligente , Plata
12.
Environ Sci Pollut Res Int ; 30(40): 92621-92635, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37493906

RESUMEN

To solve the problem of water pollution, using environment friendly and cost effective method in short time is the need of hour. In this work, chromium (Cr) and nitrogen (N) co-doped TiO2 nanoparticles were synthesized and were used for the photocatalytic degradation of dyes under visible light. The synergistic effect of metal and non-metal co-dopants added would result in appropriate reduction of band gap {from 3.2 eV of TiO2 to 2.67 eV}, decrease in recombination rate of charge carriers by trapping electrons and holes, and in better light harvesting capacity. Nanoparticles were synthesized by sol-gel method and characterized using ultraviolet-visible (UV-VIS) spectroscopy, fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), zeta potential, X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, field emission scanning electron microscopy (FE-SEM), and RAMAN spectroscopy. Eosin yellow (EY) and rose bengal (RB) were subjected to photocatalytic degradation under solar light to check the photocatalytic activity of the synthesized nanoparticles. Effects of dye concentration, the concentration of nanoparticles, time, and pH were investigated to optimize the parameters. The results obtained were remarkable for 20 ppm EY solution took 10 min using 1 gL-1 NPs at pH 3 and 10 ppm RB solution took 5 min using 0.75 gL-1 NPs at pH 5.78 (original pH) for complete degradation. Kinetics studies were also performed and both dyes followed pseudo-second-order kinetics with R2 values 0.99312 and 0.99712 for EY and RB, respectively. The study of degraded products was conducted using high-performance liquid chromatography (HPLC) hyphenated with electron spray ionization mass spectroscopy (ESI-MS) (LC-MS) and possible degradation pathways were made for both dyes. A reusability test was also performed showing the efficiency of the particles was up to 88% after 3 cycles of use. These notable results can be attributed to the efficient removal of organic pollutants using the proposed dopants in this study.


Asunto(s)
Nanopartículas , Rosa Bengala , Eosina Amarillenta-(YS) , Cromo , Luz , Titanio/química , Nanopartículas/química , Benzopiranos , Colorantes , Catálisis
13.
Anal Chem ; 95(26): 9847-9854, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37341572

RESUMEN

Chemical tagging via possible derivatization reagents alters metabolites' retention times, leading to different retention behavior during liquid chromatography-mass spectrometry (LC-MS) analysis. Incorporation of the retention time dimension can dramatically reduce false-positive structural elucidation in chemical-tagging-based metabolomics. However, few studies predict the retention times of chemically labeled metabolites, especially requiring a simple, easy-to-access, accurate, and universal predictor or descriptor. This pilot study demonstrates the application of volume-corrected free energy (VFE) calculation and region mapping as a new criterion to describe the retention time for structure elucidation in chemical-tagging-based metabolomics. The universality of VFE calculation is first evaluated with four different types of submetabolomes including hydroxyl-group-, carbonyl-group-, carboxylic-group-, and amino-group-containing compounds and oxylipins with similar chemical structures and complex isomers on reverse-phase LC. Results indicate a good correlation (r > 0.85) between VFE values and their corresponding retention times using different technicians, instruments, and chromatographic columns, describing retention behavior in reverse-phase LC. Finally, the VFE region mapping is described for identifying 1-pentadecanol from aged camellia seed oil using three proposed steps, including public database searching, VFE region mapping for its 12 isomers, and chemical standard matching. The possibility of VFE calculation of nonderivatized compounds in retention time prediction is also investigated, demonstrating its effectiveness on retention times with different influence factors.


Asunto(s)
Metabolómica , Proyectos Piloto , Metabolómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Isomerismo
14.
Sci Rep ; 13(1): 10239, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353529

RESUMEN

In this work, CoNiWO4 nanocomposite was used as an electrochemical sensor for the simultaneous electrochemical detection of tramadol and serotonin. The nanocomposite was synthesized using a hydrothermal method and characterized via XRD, SEM, TGA, Zeta, UV, and FTIR. The sensor was developed by depositing CoNiWO4-NPs onto the glassy carbon electrode surface. Tramadol and serotonin were detected by employing cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. Analytes were detected at different pH, concentrations, and scan rates. The prepared sensor showed a 0-60 µM linear range, with a LOD of 0.71 µM and 4.29 µM and LOQ of 14.3 µM and 2.3 µM for serotonin and tramadol, respectively. Finally, the modified electrode (CoNiWO4-GCE) was applied to determine tramadol and serotonin in biological samples.


Asunto(s)
Tramadol , Serotonina/química , Níquel/química , Técnicas Electroquímicas/métodos , Límite de Detección , Analgésicos , Electrodos , Neurotransmisores
15.
Sci Rep ; 13(1): 8711, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248281

RESUMEN

Methemoglobinemia (MetHb, Fe3+) is a chronic disease arising from the unequal distribution of oxyhemoglobin (HbFe2+, OHb) in the blood circulatory system. The oxidation of standard oxyhemoglobin forms methemoglobin, causing cyanosis (skin bluish staining). Methemoglobin cannot bind the pulmonary gaseous ligands such as oxygen (O2) and carbon monoxide (CO). As an oxidizing agent, the biochemical approach (MetHb, Fe3+) is modified in vitro by sodium nitrite (NaNO2). The silver-doped iron zinc oxide (Ag@Fe3O4/ZnO) is hydrothermally synthesized and characterized by analytical and spectroscopic techniques for the electrochemical sensing of methemoglobin via cyclic voltammetry (CV). Detection parameters such as concentration, pH, scan rate, electrochemical active surface area (ECSA), and electrochemical impedance spectroscopy (EIS) are optimized. The linear limit of detection for Ag@Fe3O4/ZnO is 0.17 µM. The stability is determined by 100 cycles of CV and chronoamperometry for 40 h. The serum samples of anemia patients with different hemoglobin levels (Hb) are analyzed using Ag@Fe3O4/ZnO modified biosensor. The sensor's stability, selectivity, and response suggest its use in methemoglobinemia monitoring.


Asunto(s)
Anemia , Metahemoglobinemia , Nanocompuestos , Óxido de Zinc , Humanos , Metahemoglobina/análisis , Metahemoglobinemia/diagnóstico , Óxido de Zinc/química , Oxihemoglobinas , Nanocompuestos/química , Técnicas Electroquímicas/métodos , Electrodos
16.
Heliyon ; 9(5): e16098, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215921

RESUMEN

Phosphorylated metabolites are linked to metabolism, and the dysregulation of metabolic reactions brings cancer. Dysregulated levels lead to hyperactivation of glycolytic and mitochondrial oxidative phosphorylation pathways. Abnormal concentrations are the indicators of energy-related disorders. In this work, Zeolite-loaded Mg-Al-Ce hydroxides (Zeolite@MAC) are prepared by co-precipitation and characterized through FTIR, XRD, SEM, BET, AFM, TEM, and DLS. Magnesium-Aluminum-Cerium-Zeolite particles enrich phosphate-containing small molecules. These ternary hydroxides carried out the main adsorption mechanism, which swapped the surface hydroxyl group ligands for phosphate and the inner-sphere complex of CePO4. XH2O. Cerium plays a significant role in the complexation of phosphate, and adding Mg and Al further helps disperse Ce and increase the surface charge on the adsorbent. ΑTP and AMP are the standard molecules for parameter optimization. Zeolite@MAC enriches phosphorylated metabolites followed by their desorption via UV-vis spectrophotometry. MS profiles for healthy and lung cancer serum samples are obtained for phosphorylated metabolites. Characteristic phosphorylated metabolites have been detected in lung cancer samples with high expression. The role of phosphorylated metabolites is explored for abnormal metabolic pathways in lung cancer. The fabricated material is sensitive, selective, and highly enriched for identifying phosphate-specific biomarkers.

17.
Discov Nano ; 18(1): 21, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36811724

RESUMEN

Metformin (MET) is an anti-diabetic drug employed as the first-line therapy for patients of type II diabetes mellitus (T2DM). Overdosage of drugs leads to severe outcomes, and its monitoring in biofluids is vital. The present study develops cobalt-doped yttrium iron garnets and employs them as an electroactive material immobilized on a glassy carbon electrode (GCE) for the sensitive and selective detection of metformin via electroanalytical techniques. The fabrication procedure via the sol-gel method is facile and gives a good yield of nanoparticles. They are characterized by FTIR, UV, SEM, EDX, and XRD. Pristine yttrium iron garnet particles are also synthesized for comparison, where the electrochemical behaviors of varying electrodes are analyzed via cyclic voltammetry (CV). The activity of metformin at varying concentrations and pH is investigated via differential pulse voltammetry (DPV), and the sensor generates excellent results for metformin detection. Under optimum conditions and at a working potential of 0.85 V (vs. Ag/AgCl/3.0 M KCl), the linear range and limit of detection (LOD) obtained through the calibration curve are estimated as 0-60 µM and 0.04 µM, respectively. The fabricated sensor is selective for metformin and depicts a blind response toward interfering species. The optimized system is applied to directly measure MET in buffers and serum samples of T2DM patients.

18.
Environ Res ; 216(Pt 4): 114801, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375504

RESUMEN

The toxicity and environmental persistence of perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) are of great concern for food intake in humans. However, PFASs conversion or conjugation to other substances in rice grown on PFASs polluted soil has not been explored clearly. These unknown transformed or conjugated products of PFOA and PFOS could be harmful to human health. The restriction factor in evaluating the possible transformation of PFOA and PFOS is mainly attributed to the lack of an efficient method for screening PFOA and PFOS and their related metabolites. To circumvent this challenge, we established a non-targeted screening method by combining a fluoro-cotton fiber-based solid phase extraction (FC-SPE) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) to monitor the formation of possible organic fluorine compounds from rice (Oryza sativa L.) grown on PFASs. We synthesized fluoro-cotton fibers to serve as the FC-SPE packing material and characterized by field-emission scanning electron-microscope, Fourier transform infrared, and X-ray photoelectron spectroscopy measurements. The optimal extraction conditions for the prepared FC-SPE were investigated. The performance of FC-SPE in LC-MS analysis was validated by linearity, precision, recovery, and matrix effect. Then the FC-SPE combined with LC-HRMS was used to specifically capture organic fluorine compounds from complex matrices via F-F interaction, including rice seedlings grown in PFOA and PFOS polluted soil and soil samples. By the established FC-SPE LC-HRMS method, in total 429 features were found as the possible organic fluorine compounds from rice seedlings grown in PFOA polluted soil among the 1781 features from the rice seedlings. Finally, we employed a13C metabolic tracing analysis of organic fluorine compounds in combination with the FC-SPE LC-HRMS method to further identify the features that detected from rice seedlings grown in PFOA polluted soil. The final result indicated that there were not any new organic fluorine metabolites screened out from rice grown in PFOA or PFOS polluted soil.


Asunto(s)
Ácidos Alcanesulfónicos , Compuestos de Flúor , Fluorocarburos , Oryza , Humanos , Fluorocarburos/análisis , Suelo/química , Flúor , Ácidos Alcanesulfónicos/análisis , Caprilatos
19.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808083

RESUMEN

The purpose to conduct this research work is to study the effect of photocatalytic degradation by developing cost-effective and eco-friendly nitrogen and tungsten (metal/non-metal) co-doped titania (TiO2). The inherent characteristics of synthesized nanoparticles (NPs) were analyzed by Fourier transform infra-red spectroscopy (FT-IR), ultra-violet visible (UV-Vis) spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), X-ray diffraction (XRD) spectrometry, and atomic force microscopy (AFM). Co-doping of metal and non-metal has intensified the photocatalysis trait of TiO2 nanoparticles in an aqueous medium. This co-doping of transition metal ions and modification of nitrogen extended the absorption into the visible region subsequently restraining the recombination of electrons/holes pair. The stronger light absorption in the visible region was required for the higher activity of photodegradation of dye under visible light illumination to confine bandgap energy which results in accelerating the rate of photodegradation. After efficient doping, the bandgap of titania reduced to 2.38 eV and caused the photodegradation of malachite green in visible light. The results of photocatalytic degradation were confirmed by using UV/Vis. spectroscopy and high-performance liquid chromatography coupled with a mass spectrophotometer (HPLC-ESI-MS) was used for the analysis of intermediates formed during photocatalytic utility of the work.

20.
Molecules ; 27(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35566052

RESUMEN

Catecholamines (CAs) and their metabolites play significant roles in many physiological processes. Changes in CAs concentration in vivo can serve as potential indicators for the diagnosis of several diseases such as pheochromocytoma and paraganglioma. Thus, the accurate quantification of CAs and their metabolites in biological samples is quite important and has attracted great research interest. However, due to their extremely low concentrations and numerous co-existing biological interferences, direct analysis of these endogenous compounds often suffers from severe difficulties. Employing suitable sample preparation techniques before instrument detection to enrich the target analytes and remove the interferences is a practicable and straightforward approach. To date, many sample preparation techniques such as solid-phase extraction (SPE), and liquid-liquid extraction (LLE) have been utilized to extract CAs and their metabolites from various biological samples. More recently, several modern techniques such as solid-phase microextraction (SPME), liquid-liquid microextraction (LLME), dispersive solid-phase extraction (DSPE), and chemical derivatizations have also been used with certain advanced features of automation and miniaturization. There are no review articles with the emphasis on sample preparations for the determination of catecholamine neurotransmitters in biological samples. Thus, this review aims to summarize recent progress and advances from 2015 to 2021, with emphasis on the sample preparation techniques combined with separation-based detection methods such capillary electrophoresis (CE) or liquid chromatography (LC) with various detectors. The current review manuscript would be helpful for the researchers with their research interests in diagnostic analysis and biological systems to choose suitable sample pretreatment and detection methods.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Microextracción en Fase Líquida , Catecolaminas , Humanos , Microextracción en Fase Líquida/métodos , Extracción en Fase Sólida , Microextracción en Fase Sólida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA