Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Rep ; 14(1): 13520, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866825

RESUMEN

This study aims to explore the precise resolution of the nonlinear Benjamin Bona Mahony Burgers (BBMB) equation, which finds application in a variety of nonlinear scientific disciplines including fluid dynamics, shock generation, wave transmission, and soliton theory. Within this paper, we employ two versatile methodologies, specifically the extended exp ( - Ψ ( χ ) ) expansion technique and the novel Kudryashov method, to identify the exact soliton solutions of the nonlinear BBMB equation. The solutions we discovered involve trigonometric functions, hyperbolic functions, and rational functions. The uniqueness of this research lies in uncovering the bright soliton, kink wave solution, and periodic wave solution, and conducting stability analysis. Furthermore, the solutions' graphical characteristics were explored through the utilization of the mathematical software Maple 2022 ( https://maplesoft.com/downloads/selectplatform.aspx?hash=61ab59890f2313b2241fde3423fd975e ). The system's physical interpretation is defined through various types of graphs, including contour graphs, 3D-surface graphs, and line graphs, which use appropriate parameter values. These recommended techniques hold significant importance and are applicable in diverse nonlinear evolutionary equations found in the field of nonlinear sciences for illustrating nonlinear physical models.

2.
Front Biosci (Landmark Ed) ; 29(4): 142, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38682185

RESUMEN

Innate lymphocytes, including microglial cells, astrocytes, and oligodendrocytes, play a crucial role in initiating neuroinflammatory reactions inside the central nervous system (CNS). The prime focus of this paper is on the involvement and interplay of neurons and glial cells in neurological disorders such as Alzheimer's Disease (AD), Autism Spectrum Disorder (ASD), epilepsy, and multiple sclerosis (MS). In this review, we explore the specific contributions of microglia and astrocytes and analyzes multiple pathways implicated in neuroinflammation and disturbances in excitatory and inhibitory processes. Firstly, we elucidate the mechanisms through which toxic protein accumulation in AD results in synaptic dysfunction and deregulation of the immune system and examines the roles of microglia, astrocytes, and hereditary factors in the pathogenesis of the disease. Secondly, we focus on ASD and the involvement of glial cells in the development of the nervous system and the formation of connections between neurons and investigates the genetic connections associated with these processes. Lastly, we also address the participation of glial cells in epilepsy and MS, providing insights into their pivotal functions in both conditions. We also tried to give an overview of seven different pathways like toll-like receptor signalling pathway, MyD88-dependent and independent pathway, etc and its relevance in the context with these neurological disorders. In this review, we also explore the role of activated glial cells in AD, ASD, epilepsy, and MS which lead to neuroinflammation. Even we focus on excitatory and inhibitory imbalance in all four neurological disorders as imbalance affect the proper functioning of neuronal circuits. Finally, this review concludes that there is necessity for additional investigation on glial cells and their involvement in neurological illnesses.


Asunto(s)
Enfermedades del Sistema Nervioso , Neuroglía , Neuronas , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Astrocitos/metabolismo , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Comunicación Celular , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatología , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/fisiopatología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuroglía/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Neuronas/metabolismo , Transducción de Señal
3.
Nanoscale ; 16(14): 7154-7166, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38502569

RESUMEN

Increasing energy demands and environmental problems require carbon-free and renewable energy generation systems. For this purpose, we have synthesized efficient photocatalysts (i.e., g-C3N4, Cu@g-C3N4, Ce@g-C3N4 and Cu/Ce@g-C3N4) for H2 evolution from water splitting. Their optical, structural and electrochemical properties were investigated by UV-Vis-DRS, PL, XRD, FTIR, Raman and EIS methods. Their surface morphologies were evaluated by AFM and SEM analyses. Their chemical characteristics, compositions and stability were assessed using XPS, EDX and TGA techniques. Photoreactions were performed in a quartz reactor (150 mL/Velp-UK), whereas hydrogen generation activities were monitored using a GC-TCD (Shimadzu-2014/Japan). The results depicted that Cu/Ce@g-C3N4 catalysts are the most active catalysts that deliver 23.94 mmol g-1 h-1 of H2. The higher rate of H2 evolution was attributed to the active synergism between Ce and Cu metals and the impact of surface plasmon electrons (SPEs) of Cu that were produced during the photoreaction. The rate of H2 production was optimized by controlling various factors, including the catalyst amount, light intensity, pH, and temperature of the reaction mixture. It has been concluded that the current study holds promise to replace the conventional and costly catalysts used for hydrogen generation technologies.

4.
Nanoscale Adv ; 5(12): 3233-3246, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37325525

RESUMEN

For future energy perspectives, an effective way to produce H2 from water splitting is suggested using Zn3V2O8 photocatalyst as a semiconductor support. Further, to enhance the catalytic efficiency and stability of the catalyst, gold metal was deposited over the Zn3V2O8 surface by a chemical reduction method. For comparison, the Zn3V2O8 and gold-fabricated catalysts (i.e., Au@Zn3V2O8) were used for water splitting reactions. For structural and optical properties, various techniques, including XRD, UV-Vis DRS, FTIR, PL, Raman, SEM, EDX, XPS and EIS were used for the characterizations. The scanning electron microscope revealed the pebble-shaped morphology of the Zn3V2O8 catalyst. The FTIR and EDX results confirmed the purity and structural and elemental composition of the catalysts. Overall, 7.05 mmol g-1 h-1 H2 generation was observed over Au1.0@Zn3V2O8, which was ten times higher than bare Zn3V2O8. The results revealed that the higher H2 activities could be attributed to the Schottky barriers and surface plasmon electrons (SPRs). Thus the Au@Zn3V2O8 catalysts have potential to deliver higher hydrogen generation than Zn3V2O8 by water splitting.

5.
Nanoscale Adv ; 5(12): 3247-3259, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37325542

RESUMEN

In this work, we report a synergism of Co/Na in Co@Na-BiVO4 microstructures to boost the photocatalytic performance of bismuth vanadate (BiVO4) catalysts. A co-precipitation method has been employed to synthesize blossom-like BiVO4 microstructures with incorporation of Co and Na metals, followed by calcination at 350 °C. The structure and morphology of the as-prepared photocatalysts are characterized by XRD, Raman, FTIR, SEM, EDX, AFM, UV-vis/DRS and PL techniques. Dye degradation activities are evaluated by UV-vis spectroscopy, in which methylene blue, Congo red and rhodamine B dyes are chosen for comparative study. The activities of bare BiVO4, Co-BiVO4, Na-BiVO4, and Co@Na-BiVO4 are compared. To evaluate the ideal conditions, various factors that affect degradation efficiencies have been investigated. The results of this study show that the Co@Na-BiVO4 photocatalysts exhibit higher activity than bare BiVO4, Co-BiVO4 or Na-BiVO4. The higher efficiencies were attributed to the synergistic role of Co and Na contents. This synergism assists in better charge separation and more electron transportation to the active sites during the photoreaction.

6.
Anal Bioanal Chem ; 415(20): 4875-4883, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37318553

RESUMEN

Cysteine (Cys) is a significant biological mercaptan that achieves key roles in several important physiological processes, such as reversible redox homeostasis in living organisms. Abnormal levels of Cys in the human body are directly related to many diseases. In this work, we constructed a sensitive sensor (Cys-NR) by connecting a Cys recognition group to a Nile red derivative. Due to photo-induced electron transfer (PET), the Cys-NR probe showed little fluorescence at 650 nm. With the addition of Cys to the assay solution, the chlorine unit of the probe was substituted by the thiol group of Cys. Further, the amino and sulfhydryl groups in cysteine underwent an intramolecular rearrangement, which led to the Cys-NR probe water solution turning from colorless to pink with an enhancement in fluorescence. The red fluorescence at 650 nm increased about 20 times. Based on the turn-on signal, a selective Cys detection method is developed. The probe signal is not affected by various potential interferences or other competing biothiols and the limit of detection (LOD) is determined to be 0.44 µM. In addition, the probe is further employed for imaging of Cys in live cells, revealing good biological imaging ability that could provide a new way of intracellular Cys detection.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Humanos , Compuestos de Sulfhidrilo , Oxazinas , Células HeLa , Espectrometría de Fluorescencia , Glutatión , Homocisteína
7.
Sci Rep ; 13(1): 6306, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072442

RESUMEN

In this work, sulphur doped copper ferrites (S-CuFe2O4) photocatalysts were successfully synthesized for the first time using the facile hydrothermal method. The as-synthesized photocatalysts were characterized through XRD, Raman, TGA, FT-IR, UV-Vis-DRS, SEM, EDX and PL techniques. The results revealed that doping with sulphur has been found to be a suitable alternative that causes strain in the lattices as anions replace the oxygen from the CuFe2O4 nanostructures. Due to sulphur dopants, photocatalysts are able to efficiently trap and transfer the photoinduced charges, which readily suppress charge recombination. A UV-Vis spectrophotometer was used to monitor the degradation of selective toxic organic dyes (RhB, CR, MO, and CV) in aqueous media. The dye degradation results provide evidence for the surprisingly superior performance of S-CuFe2O4 over pristine CuFe2O4. On the basis of its efficiencies, this work can be assigned as an excellent candidate for photocatalysis science.

8.
RSC Adv ; 13(4): 2379-2391, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36741159

RESUMEN

In this work, villi-microstructured Au-loaded BiVO4 photocatalysts were successfully synthesized by hydrothermal method. The as-synthesized photocatalysts were characterized by XRD, Raman, UV-Vis-DRS, PL, SEM and EDX techniques. The presence of metallic Au on the surface of Vm-BiVO4 support boosts the photocatalytic performance to degrade toxic crystal violet dye. The enhanced activities were attributed to the surface plasmon resonance (SPR) of Au which efficiently broadens the visible light response. SPR increases the electron population in Vm-BiVO4 and forms a Schottky barrier at the interface between Au and Vm-BiVO4 which enhances the separation efficiency of photoinduced charges. Various factors affecting photocatalytic degradation of crystal violet (CV) were studied to find optimum conditions. In addition, a radical trapping study indicates that ˙O2 - is the main active species in the degradation process of cationic CV dye. All photocatalytic degradation reactions were monitored by UV-Vis spectrophotometry (PerkinElmer/λ-365).

9.
PLoS One ; 17(2): e0263712, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176050

RESUMEN

The incidence of vaccine preventable disease in Pakistan remains high despite a long-standing Expanded Program on Immunization (EPI). We describe vaccine completeness, timeliness and determinants of coverage from a remote rural cohort (2012-2014). Vaccination histories were taken from EPI records. Vaccination was complete if all doses were received according to the EPI schedule and timely if doses were not ≥3 days early or ≥ 28 days late. Three models are presented: a multivariable logistic regression of household demographic and socioeconomic factors associated with complete vaccination, a multivariable mixed effects logistic regression assessing whether or not the vaccine was administered late (versus on-time), and a mixed effects multivariable Poisson regression model analysing the interval (in days) between vaccine doses. Of 959 enrolled children with full vaccination histories, 88.2 and 65.1% were fully vaccinated following either the pentavalent or DPT/HBV schedules if measles was excluded; coverage dropped to 50.0 and 27.1% when both doses of measles were included. Sixty-four (6.7%) were unvaccinated. Coverage and timeliness declined with subsequent doses. Migrating into the village after 1995 (95%CI 1.88 to 5.17) was associated with late vaccination. Being male, having an older father, and having parents with at least some formal education reduced the likelihood of a late dose. The interval between doses was consistent at 5 weeks (compared with the 4 weeks recommended by EPI). None of the socio-demographic variables were related to the likelihood of receiving full coverage. Vaccine coverage in Oshikhandass was higher than national averages. Measles vaccine coverage and timeliness were low; special consideration should be paid to this vaccine. The local vaccination schedule differed from the EPI, but the consistency suggests good local administration.


Asunto(s)
Programas de Inmunización/normas , Esquemas de Inmunización , Vacuna Antisarampión/administración & dosificación , Sarampión/prevención & control , Factores Socioeconómicos , Cobertura de Vacunación/estadística & datos numéricos , Vacunación/estadística & datos numéricos , Adulto , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Sarampión/epidemiología , Sarampión/virología , Morbillivirus/efectos de los fármacos , Morbillivirus/aislamiento & purificación , Pakistán/epidemiología
10.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086930

RESUMEN

Plants are agile, plastic organisms able to adapt to everchanging circumstances. Responding to far-red (FR) wavelengths from nearby vegetation, shade-intolerant species elicit the adaptive shade-avoidance syndrome (SAS), characterized by elongated petioles, leaf hyponasty, and smaller leaves. We utilized end-of-day FR (EODFR) treatments to interrogate molecular processes that underlie the SAS leaf response. Genetic analysis established that PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) is required for EODFR-mediated constraint of leaf blade cell division, while EODFR messenger RNA sequencing data identified ANGUSTIFOLIA3 (AN3) as a potential PIF7 target. We show that PIF7 can suppress AN3 transcription by directly interacting with and sequestering AN3. We also establish that PIF7 and AN3 impose antagonistic control of gene expression via common cis-acting promoter motifs in several cell-cycle regulator genes. EODFR triggers the molecular substitution of AN3 to PIF7 at G-box/PBE-box promoter regions and a switch from promotion to repression of gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Hojas de la Planta/metabolismo , Transactivadores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Factor VII/genética , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Fitocromo/metabolismo , Regiones Promotoras Genéticas/genética , Transactivadores/genética
11.
PLoS Med ; 18(9): e1003745, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34582458

RESUMEN

BACKGROUND: Adolescence is a critical point in the realization of human capital, as health and educational decisions with long-term impacts are made. We examined the role of early childhood experiences on health, cognitive abilities, and educational outcomes of adolescents followed up from a longitudinal cohort study in Pakistan, hypothesizing that early childhood experiences reflecting poverty would manifest in reduced health and development in adolescence. METHODS AND FINDINGS: Adolescents/young adults previously followed as children aged under 5 years were interviewed. Childhood data were available on diarrhea, pneumonia, and parental/household characteristics. New data were collected on health, anthropometry, education, employment, and languages spoken; nonverbal reasoning was assessed. A multivariable Bayesian network was constructed to explore structural relationships between variables. Of 1,868 children originally enrolled, 1,463 (78.3%) were interviewed as adolescents (range 16.0-29.3 years, mean age 22.6 years); 945 (65%) lived in Oshikhandass. While 1,031 (70.5%) of their mothers and 440 (30.1%) of their fathers had received no formal education, adolescents reported a mean of 11.1 years of education. Childhood diarrhea (calculated as episodes/child-year) had no association with nonverbal reasoning score (an arc was supported in just 4.6% of bootstrap samples), health measures (with BMI, 1% of bootstrap samples; systolic and diastolic blood pressure, 0.1% and 1.6% of bootstrap samples, respectively), education (0.7% of bootstrap samples), or employment (0% of bootstrap samples). Relationships were found between nonverbal reasoning and adolescent height (arc supported in 63% of bootstrap samples), age (84%), educational attainment (100%), and speaking English (100%); speaking English was linked to the childhood home environment, mediated through maternal education and primary language. Speaking English (n = 390, 26.7% of adolescents) was associated with education (100% of bootstrap samples), self-reported child health (82%), current location (85%) and variables describing childhood socioeconomic status. The main limitations of this study were the lack of parental data to characterize the home setting (including parental mental and physical health, and female empowerment) and reliance on self-reporting of health status. CONCLUSIONS: In this population, investments in education, especially for females, are associated with an increase in human capital. Against the backdrop of substantial societal change, with the exception of a small and indirect association between childhood malnutrition and cognitive scores, educational opportunities and cultural language groups have stronger associations with aspects of human capital than childhood morbidity.


Asunto(s)
Desarrollo del Adolescente , Desarrollo Infantil , Estado de Salud , Acontecimientos que Cambian la Vida , Pobreza , Adolescente , Teorema de Bayes , Niño , Cognición , Estudios de Cohortes , Escolaridad , Femenino , Recursos en Salud , Humanos , Estudios Longitudinales , Masculino , Pakistán , Pobreza/psicología , Clase Social , Adulto Joven
12.
Plant Physiol ; 186(2): 1220-1239, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33693822

RESUMEN

Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.


Asunto(s)
Proteínas de Arabidopsis/efectos de la radiación , Arabidopsis/fisiología , Fitocromo/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , División Celular , Luz , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
13.
Food Chem Toxicol ; 149: 112008, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33508417

RESUMEN

Heavy metals especially lead (Pb) and mercury (Hg) are recognized as most emerging pollutants in underground water and are major threat to public health around the world. Major challenge to mitigate water pollution is construction of effective materials containing a host of deceivingly accessible high-density and high-level efficiency. Herein, we have synthesized two metal-organic frameworks (MOFs) with efficient porosity showing the right combination of structures. Representatively, ZIF-8 and ZIF-67 were designed by reacting Zn, Co salts with 2-methyl imidazole showing superior efficacy in removing Pb and Hg (1978.63&1436.11 mg/g respectively) from water. These adsorbents displayed high distribution values permitting them to quickly reduce concentration level of Pb2+, Hg2+ below permissible limit (Pb = 0-15 µg/L, Hg = 1-10 µg/L). EDX, FTIR analysis revealed that Pb2+, Hg2+ bound through weak interactions. Results presented here have shown extraordinary potential with high environmental remediation performance having 99.5% and 98.1% removal efficiency for lead & mercury respectively. Results revealed that adsorbents have same organic linker that identifies same morphology required for adsorption. The difference in adsorption capacity and porosity (ZIF-8 = 937&1370 m2/g, ZIF-67 = 1289&1889 m2/g) are deliberately caused due to presence of metal atoms having different electronic distribution, as cobalt in ZIF-67 and in case of ZIF-8 zinc metal.


Asunto(s)
Imidazoles/química , Plomo/química , Mercurio/química , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/química , Agua/química , Adsorción , Cinética , Microscopía Electrónica de Rastreo , Purificación del Agua
14.
J Pak Med Assoc ; 70(4): 705-712, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32296219

RESUMEN

The 2015 heat wave resulted in an estimated over 1200 deaths during the month of June. However, there were no records on the spatial distribution of the effects of this heat wave. An analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) daily data was conducted to identify regions that experienced above normal temperatures in 2015. An analysis of the monthly averages showed that in general April and May were the warmer months in Karachi, unlike the case in 2015. In addition, the general warm trends were common in the highly industrialised Sindh Industrial Trading Estate (SITE) and Liaquatabad towns, while Gadap, with its mostly barren land, and New Karachi also experience higher temperatures. Coastal towns were naturally cooler and more habitable in the given scenario. A count of the spatial presence of health facilities for the city was also extracted where Gadap and Korangi were poorly served while the more affluent towns of Defence Housing Authority (DHA) and Gulshan-e-Iqbal appeared to be better served.


Asunto(s)
Calor Extremo , Mapeo Geográfico , Instituciones de Salud/estadística & datos numéricos , Accesibilidad a los Servicios de Salud , Trastornos de Estrés por Calor , Ciudades , Urgencias Médicas , Instituciones de Salud/provisión & distribución , Hospitales/estadística & datos numéricos , Hospitales/provisión & distribución , Calor , Humanos , Pakistán , Médicos/provisión & distribución , Análisis Espacial
15.
Sci Total Environ ; 703: 135010, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31757548

RESUMEN

The complex snow and glacier (cryosphere) dynamics over the "third pole" mountainous regions of the Karakoram-Hindukush-Himalayas (HKH) makes this region challenging for accurate hydrological predictions. The objective of this study is to investigate the impacts of climate change on major hydrological components (precipitation-runoff, snow- and glacier-runoff, evapotranspiration and inter-annual change in streamflows) over the Hunza-, Gilgit- and Astore-River basins, located in HKH. For this purpose, three different hydrological models (snowmelt runoff (SRM), HEC-HMS and HBV are tested over snow- and glacier-covered river basins. These are subsequently integrated with the climate projections simulated from regional climate models (RCMs) developed under CORDEX-SA experiments. The basin-wide RCM-simulations for future scenarios exhibited an increase in precipitation but decline in intensity of rise over high-altitude zones. The temperature rise showed a maximum increase during monsoon by 4.18 °C, 4.37 °C and 4.34 °C over Hunza-, Gilgit- and Astore-River basins, respectively, for the period 2071-2099 (2090s) and a high emission scenario (RCP8.5). Further, in response to rise in precipitation and temperature, the SRM simulations showed a significant increase in snow- glacier-melt runoff (49%, 42% and 46% for SRM) and precipitation runoff (23.8%, 15.7% and 27% for HEC-HMS) in the Hunza-, Gilgit- and Astore-River basins, respectively, for the 2090s under RCP8.5. The streamflow projections for SRM showed a shift in hydrological regime with an increase by 369 (168.4%), 216.5 (74.8%) and 131.8 m3/s (82%) during pre-monsoon in the Hunza-, Gilgit- and Astore-River basins, respectively and then decline by -73.2 m3/s (-13.9%) and -45.4 m3/s (23.4%) during monsoon of the 2090s, in the Hunza- and Astore-River basins, respectively, under RCP8.5. Overall, the projections show that the pre-monsoon and monsoon seasons are expected to be strongly influenced by climate change, through alterations in snow- and glacier-accumulation, and melt regimes with substantial consequences for river runoff in the region.

16.
Talanta ; 207: 120316, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31594608

RESUMEN

A simple and efficient fluorometric sensing method is developed for the rapid detection of nitroaromatic explosives, based on the quenching of monomer and excimer emission of benzo[ghi]perylene and coronene. The ratiometric method (IE/IM) offers a linear response as a function of the concentration of picric acid (PA, i.e. 2,4,6-trinitrophenol), which is used as a model example of the nitroaromatic compounds (NOCs). The detection range is observed to be 0.1-120 µM of PA (22.9 ppb-27.5 ppm). The bright emission of the stable probe excimer and monomer can be easily distinguished under UV lamp from the quenched solution with nitro-aromatic molecules that enables naked-eye detection of nitro-aromatic explosives. The fluorescent paper strips prepared by embedding the probes on the surface of the paper are used for fast, portable and selective detection of NOCs. Our optimized methods can easily detect and quantify NOCs down to 0.1 µM. The sensing process is free of commonly encountered interferences such as volatile organic compounds (VOCs), acids, bases, oxygen, and salt solutions.

17.
Talanta ; 197: 270-276, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771934

RESUMEN

Proteases, as one of the most significant kind of digestive enzymes, are closely related to a variety of physiological processes and diseases. Herein, a black phosphorus nanosheets (BPs) based sensitive fluorometric method for protease detection and inhibitor screening is proposed. The aqueous solution of perylene probe (probe 1) displays a strong fluorescence. BPs, as novel discovered two-dimensional (2D) materials, can adsorb probe 1 through electrostatic interactions, which causes fluorescence quenching of probe 1. Histone can control the interactions between the perylene probe and BPs, which can be further regulated by the introduction of a protease. Thus, the protease activity can be monitored by detecting the fluorescence intensity changes of probe 1. The method is label free, sensitive and selective. As low as 1 ng/mL trypsin can be easily detected.


Asunto(s)
Colorantes Fluorescentes/química , Nanoestructuras/química , Péptido Hidrolasas/análisis , Perileno/química , Fósforo/química , Fluorescencia , Colorantes Fluorescentes/farmacología , Humanos , Péptido Hidrolasas/metabolismo , Perileno/farmacología
18.
Chem Commun (Camb) ; 55(8): 1036-1039, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30624451

RESUMEN

A perylene probe PC4 is explored as a smart lysosome-targeted photosensitizer. It can efficiently kill cancer cells and also mark dead cells with bright fluorescence emission in nuclei for real-time monitoring and assessing of the photodynamic therapeutic efficiency.

19.
Analyst ; 143(18): 4283-4289, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30084447

RESUMEN

We report benzo[ghi]perylene (BzP) and coronene (Cron) as multimode fluorescent probes for accurate monitoring and direct visualization of monomer-micelle transitions in surfactants for the first time. The probe molecules formed self-assembled nanoparticles in an aqueous solution and displayed strong aggregation-enhanced excimer emission (AEEE). During the process of surfactant monomer-micelle transition, the probe nanoparticles dissolved, and the observation of excimer-monomer emission transition clearly indicated the formation of micelles. The ratiometric changes in excimer-monomer emission (IE/IM) were used for the precise determination of critical micelle concentration (CMC) of various surfactants. The monomer-micelle transition process was directly observed under a UV lamp, and the visual determination of CMC became possible. The CMC value determination using the excimer/monomer ratio (IE/IM), UV-vis, lifetime and visual assessment clearly suggests that BzP and Cron are excellent multimode probes for monitoring the micelle structural transitions of amphiphiles.

20.
Sci Total Environ ; 639: 961-976, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929335

RESUMEN

Streamflow projections are fundamental sources for future water resources strategic planning and management, particularly in high-altitude scarcely-gauged basins located in high mountain Asia. Therefore, quantification of the climate change impacts on major hydrological components (evapotranspiration, soil water storage, snowmelt-runoff, rainfall-runoff and streamflow) is of high importance and remains a challenge. For this purpose, we analysed general circulation models (GCMs) using a multiple bias correction approach and two different hydrological models i.e. the Hydrological Modelling System (HEC-HMS) and the Snowmelt Runoff Model (SRM), to examine the impact of climate change on the hydrological behaviour of the Jhelum River basin. Based on scrutiny, climate projections using four best fit CMIP5 GCMs (i.e. BCC-CSM1.1, INMCM4, IPSL-CM5A-LR and CMCC-CMS) were chosen by evaluating linear scaling, local intensity scaling (LOCI) and distribution mapping (DM) approaches at twenty climate stations. Subsequently, after calibration and validation of HEC-HMS and SRM at five streamflow gauging stations, the bias corrected projected climate data was integrated with HEC-HMS and SRM to simulate projected streamflow. Results demonstrate that the DM approach fitted the projections best. The climate projections exhibited maximum intra-annual rises in precipitation by 183.2 mm (12.74%) during the monsoon for RCP4.5 and a rise in Tmin (Tmax) by 4.77 °C (4.42 °C) during pre-monsoon, for RCP8.5 during 2090s. The precipitation and temperature rise is expected to expedite and increase snowmelt-runoff up to 48% and evapotranspiration and soil water storage up to 45%. The projections exhibited significant increases in streamflows by 330 m3/s (22.6%) for HEC-HMS and 449 m3/s (30.7%) for SRM during the pre-monfaf0000soon season by the 2090s under RCP8.5. Overall, our results reveal that the pre-monsoon season is potentially utmost affected under scenario-periods, and consequently, which has the potential to alter the precipitation and flow regime of the Jhelum River basin due to significant early snow- and glacier-melt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA