Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e29658, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694111

RESUMEN

In the current study, seven (7) aurone derivatives (ADs) were synthesized and employed to in-vitro LOX and COX-2 assays, in-vivo models of acetic acid-induced mice writhing, formalin-induced mice paw licking and tail immersion test to evaluate their analgesic potential at the doses of 10 mg and 20 mg/kg body weight. Molecular docking was performed to know the active binding site at both LOX and COX-2 as compared to standard drugs. Among the ADs, 2-(3,4-dimethoxybenzylidene)benzofuran-3(2H)-one (WE-4)possessed optimal LOX and COX-2 inhibitory strength (IC50=0.30 µM and 0.22 µM) as compared to standard (ZileutonIC50 = 0.08 µM, CelecoxibIC50 = 0.05 µM). Similarly in various pain models compound WE-4 showed significantly (p < 0.05) highest percent analgesic potency as compared to control at a dose of 20 mg/kg i.e. 77.60 % analgesic effect in acetic acid model, 49.97 % (in Phase-1) and 70.93 % (inPhase-2) analgesic effect in formalin pain model and 74.71 % analgesic response in tail immersion model. By the administration of Naloxone, the tail flicking latencies were reversed (antagonized) in all treatments. The WE-4 (at 10 mg/kg and 20 mg/kg) was antagonized after 90 min from 11.23 ± 0.93 and 13.41 ± 1.21 to 5.30 ± 0.48 and 4.80 ± 0.61 respectively as compared to standard Tramadol (from 17.74 ± 1.33 to 3.70 ± 0.48), showing the opiodergic receptor involvement. The molecular docking study of ADs revealed that WE-4 had a higher affinity for LOX and COX-2 with docking scores of -4.324 and -5.843 respectively. As a whole, among the tested ADs, compound WE-4 demonstrated excellent analgesic effects that may have been caused by inhibiting the LOX and COX-2 pathways.

2.
ACS Omega ; 9(8): 9813-9822, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434828

RESUMEN

Diabetes, also known as diabetes mellitus (DM), is a metabolic disorder characterized by an abnormal rise in blood sugar (glucose) levels brought on by a complete or partial lack of insulin secretion along with corresponding changes in the metabolism of lipids, proteins, and carbohydrates. It has been reported that medicinal plants play a pivotal role in the treatment of various ailments such as diabetes mellitus, dyslipidemia, and hypertension. The current study involved exploring the acute toxicity and in vivo antidiabetic activity of berberine (WA1), palmatine (WA2), and 8-trichloromethyl dihydroberberine (WA3) previously isolated from Berberis glaucocarpa Stapf using a streptozotocin (STZ)-induced diabetic rat model. Body weight and blood glucose level were assessed on a day interval for 4 weeks. Biochemical parameters, antioxidant enzymes, and oxidative stress markers were also determined. In an acute toxicity profile, the WA1, WA2, and WA3 were determined to be nontoxic up to 500 mg/kg (b.w). After the second and third weeks of treatment (14 and 21 days), the blood glucose levels in the WA1-, WA2-, and WA3-treated groups were significantly lower than those in the diabetic control group (476.81 ± 8.65 mg/dL, n = 8, P < 0.001). On the 21st day, there was a decrease in the blood glucose level and the results obtained were 176.33 ± 4.69, 197.21 ± 4.80, and 161.99 ± 4.75 mg/dL (n = 8, P < 0.001) for WA1, WA2, and WA3 at 12 mg/kg, respectively, as opposed to the diabetic control group (482.87 ± 7.11 mg/dL, n = 8, P < 0.001). Upon comparison with the diabetic group at the end of the study (28 days), a substantial drop in the glucose level of WA3 at 12 mg/kg (110.56 ± 4.11 mg/dL, n = 8, P < 0.001) was observed that was almost near the values of the normal control group. The treated groups (WA1, WA2, and WA3) treated with the samples displayed a significant decline in the levels of HbA1c. Treatment of the samples dramatically lowered the lipid level profile. In groups treated with samples, plasma levels of triglycerides, total cholesterol, and LDL were significantly lowered [F (5, 42) = 100.6, n = 8, P < 0.001]; these levels were also significantly decreased [F (5, 42) = 129.6 and 91.17, n = 8, P < 0.001]. In contrast to the diabetes group, all treated groups had significantly higher HDL levels [F (5, 42) = 15.46, n = 8, P < 0.001]. As a result, hypolipidemic activity was anticipated in the samples. In addition to that, the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) was considerably elevated in the groups treated with the sample compared to the diabetic control group (n = 8, P < 0.001).

3.
Pak J Pharm Sci ; 36(3(Special)): 953-961, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37587704

RESUMEN

This study is carried out to assess the effects of rosuvastatin and simvastatin on blood vessels for possible vasorelaxant effect. The study is also translating the possible vasorelaxant effect in Wistar rats for a subsequent fall in systolic blood pressure. It is evident from the EC50, that rosuvastatin is more effective on relaxing N.E induced contractions, while simvastatin is more effective on relaxing KCL induced contractions. Simvastatin is equipotent when compared to effects of amlodipine on KCl induced contractions in denuded aortae. Simvastatin produced significant right shift in test concentration 1.1× 10-6M with its respective EC50 -1.85logCa++M as compared to its respective control EC50 -3logCa++M. Rosuvastatin also produced significant right shift in the EC50. In conclusion, it is stated that rosuvastatin and simvastatin relax the aortic strips preparations through inhibition of voltage gated calcium channels and inhibition of N.E induced contractions. Rosuvastatin and simvastatin have additive effects when used in the presence of a standard vaso-relaxant drug like amlodipine, which further confirms its additive effect on decreasing the systolic blood pressure of hypertensive rats (P<0.05).


Asunto(s)
Amlodipino , Antihipertensivos , Animales , Ratas , Ratas Wistar , Antihipertensivos/farmacología , Amlodipino/farmacología , Rosuvastatina Cálcica/farmacología , Simvastatina/farmacología , Vasodilatación , Vasodilatadores/farmacología
4.
Biomedicines ; 11(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37189682

RESUMEN

The technologies for fabrication of nanocrystals have an immense potential to improve solubility of a variety of the poor water-soluble drugs with subsequent enhanced bioavailability. Repaglinide (Rp) is an antihyperglycemic drug having low bioavailability due to its extensive first-pass metabolism. Microfluidics is a cutting-edge technique that provides a new approach for producing nanoparticles (NPs) with controlled properties for a variety of applications. The current study's goal was to engineer repaglinide smart nanoparticles (Rp-Nc) utilizing microfluidic technology (Dolomite Y shape), and then to perform in-vitro, in-vivo, and toxicity evaluations of them. This method effectively generated nanocrystals with average particle sizes of 71.31 ± 11 nm and a polydispersity index (PDI) of 0.072 ± 12. The fabricated Rp's crystallinity was verified by Differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD). In comparison to the raw and commercially available tablets, the fabricated Rp's nanoparticles resulted in a higher saturation solubility and dissolving rate (p < 0.05). Rp nanocrystals had a considerably lower (p < 0.05) IC50 value than that of the raw drug and commercial tablets. Moreover, Rp nanocrystals at the 0.5 and 1 mg/kg demonstrated a significant decrease in blood glucose level (mg/dL, p < 0.001, n = 8) compared to its counterparts. Rp nanocrystals at the 0.5 mg/kg demonstrated a significant decrease (p < 0.001, n = 8) in blood glucose compared to its counterparts at a dose of 1 mg/kg. The selected animal model's histological analyses and the effect of Rp nanocrystals on several internal organs were determined to be equivalent to those of the control animal group. The findings of the present study indicated that nanocrystals of Rp with improved anti-diabetic properties and safety profiles can be successfully produced using controlled microfluidic technology, an innovative drug delivery system (DDS) approach.

5.
Diagnostics (Basel) ; 13(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37046452

RESUMEN

Moxifloxacin and gemifloxacin are the two newer broad-spectrum 8-methoxy-quinolone derivatives that are used to treat various bacterial infections in cardiac patients. In this research study, we assessed the impact of moxifloxacin and gemifloxacin on the QT intervals of electrocardiograms in normal adult doses and draw a comparison, in a controlled environment, on healthy volunteers. Additionally, the effect of both test drugs on the QRS complex was checked. Sixty healthy volunteers were randomly assigned to two groups via R-software, and each respectively received moxifloxacin and gemifloxacin for five days. The research ethics committee approved the research, and it was registered for clinical trial under NCT04692623. The participants' electrocardiograms were obtained before the start of the dose (baseline) and on the fifth day. Significant prolongation of QT interval was noted in moxifloxacin (p < 0.0001) as compared to gemifloxacin treated groups. There were no cases of QTc prolongation over the usual limits (450-470 ms) in the gemifloxacin-treated group, however, QTc prolongations at the rate of 30 and 60 ms from the baseline were noted, interpreted as per the EMEA guidelines. These findings indicate that moxifloxacin caused significant (p < 0.0001) QT interval prolongation (QTIP) as compared to gemifloxacin. In contrast to the previously reported literature, the prominent effect of moxifloxacin on the widening of the QRS-complex was noted with no such effect on QRS-widening in the gemifloxacin-treated group. It is concluded that both drugs have the potential for considerable QT interval prolongation (QTIP) effects, which is one of the risk factors for developing torsade de pointes (TdPs) in cardiac patients. Thus, clinicians should exercise caution when prescribing moxifloxacin and gemifloxacin to cardiac patients and should consider alternate treatment options.

6.
Brain Sci ; 13(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979333

RESUMEN

Depression is a serious psychological disorder which negatively affects human feelings and actions. The use of antidepressants is the therapy of choice while treating depression. However, such drugs are associated with severe side effects. There is a need for efficient and harmless drugs. In this connection, the present study was designed to synthesize several substituted benzodiazepine derivatives and explore their antidepressant potentials in an animal model. The chalcone backbone was initially synthesized, which was then converted into several substituted benzodiazepine derivatives designated as 1-6. The synthesized compounds were identified using spectroscopic techniques. The experimental animals (mice) after acclimatation were subjected to forced swim test (FST) and tail suspension test (TST) after oral administration of the synthesized compounds to evaluate their antidepressant potentials. At the completion of the mentioned test, the animals were sacrificed to determine GABA level in their brain hippocampus. The chloro-substituent compound (2) significantly reduced the immobility time (80.81 ± 1.14 s; p < 0.001 at 1.25 mg/kg body weight and 75.68 ± 3.73 s with p < 0.001 at 2.5 mg/kg body weight dose), whereas nitro-substituent compound (5) reduced the immobility time to 118.95 ± 1.31 and 106.69 ± 3.62 s (p < 0.001), respectively, at the tested doses (FST). For control groups, the recorded immobility time recorded was 177.24 ± 1.82 s. The standard drug diazepam significantly reduced immobility time to 70.13 ± 4.12 s while imipramine reduced it to 65.45 ± 2.81 s (p < 0.001). Similarly, in the TST, the compound 2 reduced immobility time to 74.93 ± 1.14 s (p < 0.001) and 70.38 ± 1.43 s (p < 0.001), while compound 5 reduced it to 88.23 ± 1.89 s (p < 0.001) and 91.31 ± 1.73 s (p < 0.001) at the tested doses, respectively, as compared to the control group immobility time (166.13 ± 2.18 s). The compounds 1, 3, 4, and 6 showed weak antidepressant responses as compared to compounds 2 and 5. The compounds 2 and 5 also significantly enhanced the GABA level in the brain's hippocampus of experimental animals, indicating the possible involvement of GABAergic mechanism in alleviating the depression which is evident from the significant increase in mRNA levels for the α subunit of the GABAA receptors in the prefrontal cortex of mice as well. From the results, it can be concluded that compound 2 and 5 could be used as alternative drugs of depression. However, further exploration in this connection is needed in other animal models in order to confirm the observed results in this study.

7.
Biomedicines ; 10(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36289646

RESUMEN

Depression is a serious psychiatric disorder that affects millions of individuals all over the world, thus demanding special attention from researchers in order to investigate its effective remedies. Curcumin, along with its synthetic derivatives, is recognized for its incredible pharmacological activities. In this study, methyl, methoxy and chloro-substituent synthetic curcumin analogues C1-C3 were respectively tested for free radical-scavenging activity. Behavioral studies were performed using chemical-induced and swimming endurance tests as stress models, and forced swim tests (FSTs) and tail suspension tests (TSTs) as depression mice models. Biochemical examinations were performed after a scopolamine-induced stress model by decapitating the mice, and brain tissues were isolated for biochemical assessment of catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA). The curcumin analogue C2 exhibited higher DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis-3-ethylbenzothiazo-line-6-sulphonate) free radical-scavenging potential, having IC50 values of 45.18 µg/mL and 62.31 µg/mL, respectively, in comparison with reference curcumin and tocopherol. In the chemical-induced test, C2 (80.17%), C3 (72.79%) and C1 (51.85%) revealed higher antistress responses by significantly reducing the number of writhes, whereas the immobility time was significantly reduced by C2 and C3 in the swimming endurance test, indicating excellent antistress potential. Similarly, C2 and C3 significantly reduced the immobility times in FST and TST, demonstrating their antidepressant properties. The biomarkers study revealed that these compounds significantly enhanced hippocampus CAT, SOD and GSH, and reduced MDA levels in the scopolamine-induced stress mice model. These findings suggest the potential of curcumin analogues (C2 and C3) as antistress and antidepressant agents.

8.
Biomedicines ; 10(10)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36289859

RESUMEN

Alzheimer's disease is the commonest form of dementia associated with short-term memory loss and impaired cognition and, worldwide, it is a growing health issue. A number of therapeutic strategies have been studied to design and develop an effective anti-Alzheimer drug. Curcumin has a wide spectrum of biological properties. In this regard, the antioxidant potentials of mono-carbonyl curcumin analogues (h1−h5) were investigated using in vitro antioxidant assays and hippocampal-based in vivo mouse models such as light−dark box, hole board, and Y-maze tests. In the in vitro assay, mono-carbonyl curcumin analogues h2 and h3 with methoxy and chloro-substituents, respectively, showed promising 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azinobis-3-ethylbenzothiazo-line-6-sulfonate (ABTS) free radical scavenging activities. In the in vivo studies, scopolamine administration significantly (p < 0.001) induced oxidative stress and memory impairment in mice, in comparison to the normal control group. The pretreatment with mono-carbonyl curcumin analogues, specifically h2 and h3, significantly decreased (123.71 ± 15.23 s (p < 0.001), n = 8; 156.53 ± 14.13 s (p < 0.001), n = 8) the duration of time spent in the light chamber and significantly enhanced (253.95 ± 19.05 s (p < 0.001), n = 8, and 239.57 ± 9.98 s (p < 0.001), n = 8) the time spent in the dark compartment in the light−dark box arena. The numbers of hole pokings were significantly (p < 0.001, n = 8) enhanced in the hole board test and substantially increased the percent spontaneous alternation performance (SAP %) in the Y-maze mouse models in comparison to the stress control group. In the biomarker analysis, the significant reduction in the lipid peroxidation (MDA) level and enhanced catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) activities in the brain hippocampus reveal their antioxidant and memory enhancing potentials. However, further research is needed to find out the appropriate mechanism of reducing oxidative stress in pathological models.

9.
Molecules ; 27(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014445

RESUMEN

Schiff bases are a class of organic compounds with azomethine moiety, exhibiting a wide range of biological potentials. In this research, six chiral Schiff bases, three 'S' series (H1−H3) and three 'R' series (H4−H6), were synthesized. The reaction was neat, which means without a solvent, and occurred at room temperature with a high product yield. The synthesized compounds were evaluated for analgesic potential in vivo at doses of 12.5 and 25 mg/kg using acetic-acid-induced writhing assay, formalin test, tail immersion and hot plate models, followed by investigating the possible involvement of opioid receptors. The compounds H2 and H3 significantly (*** p < 0.001) reduced the writhing frequency, and H3 and H5 significantly (*** p < 0.001) reduced pain in both phases of the formalin test. The compounds H2 and H5 significantly (*** p < 0.001) increased latency at 90 min in tail immersion, while H2 significantly (*** p < 0.001) increased latency at 90 min in the hot plate test. The 'S' series Schiff bases, H1−H3, were found more potent than the 'R' series compounds, H4−H6. The possible involvement of opioid receptors was also surveyed utilizing naloxone in tail immersion and hot plate models, investigating the involvement of opioid receptors. The synthesized compounds could be used as alternative analgesic agents subjected to further evaluation in other animal models to confirm the observed biological potential.


Asunto(s)
Extractos Vegetales , Bases de Schiff , Analgésicos/uso terapéutico , Animales , Dolor/tratamiento farmacológico , Extractos Vegetales/farmacología , Receptores Opioides , Bases de Schiff/farmacología
10.
Molecules ; 27(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458662

RESUMEN

Alzheimer's disease is an emerging health disorder associated with cognitive decline and memory loss. In this study, six curcumin analogs (1a−1f) were synthesized and screened for in vitro cholinesterase inhibitory potential. On the basis of promising results, they were further investigated for in vivo analysis using elevated plus maze (EPM), Y-maze, and novel object recognition (NOR) behavioral models. The binding mode of the synthesized compounds with the active sites of cholinesterases, and the involvement of the cholinergic system in brain hippocampus was determined. The synthesized curcumin analog 1d (p < 0.001, n = 6), and 1c (p < 0.01, n = 6) showed promising results by decreasing retention time in EPM, significantly increasing % SAP in Y-maze, while significantly (p < 0.001) enhancing the % discrimination index (DI) and the time exploring the novel objects in NORT mice behavioral models. A molecular docking study using MOE software was used for validation of the inhibition of cholinesterase(s). It has been indicated from the current research work that the synthesized curcumin analogs enhanced memory functions in mice models and could be used as valuable therapeutic molecules against neurodegenerative disorders. To determine their exact mechanism of action, further studies are suggested.


Asunto(s)
Curcumina , Escopolamina , Acetilcolinesterasa/metabolismo , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Animales , Colinérgicos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Colinesterasas , Modelos Animales de Enfermedad , Aprendizaje por Laberinto , Ratones , Simulación del Acoplamiento Molecular , Escopolamina/efectos adversos
11.
Antibiotics (Basel) ; 11(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35203750

RESUMEN

Fluoroquinolones (FQs) have been reported to cause dysglycemia in both diabetic and non-diabetic patients. However, diabetic patients are usually on polypharmacy, so we cannot attribute the dysglycemia specifically to FQs. To answer the question as to whether Moxifloxacin and Gemifloxacin influence blood glucose levels and serum insulin levels or otherwise, rabbits were used as experimental animals in an in vivo model followed by a phase I randomized clinical trial in euglycemic healthy volunteers. The effects on the serum insulin and blood glucose levels in the Moxifloxacin and Gemifloxacin treated groups were, respectively, determined on the fifth day in both the in-vivo rabbits model and in the test subjects of the phase I clinical trial. The effects of these drugs were also checked on the histomorphology of the pancreas in the rabbits. The findings of our study suggest that Moxifloxacin and Gemifloxacin significantly (p < 0.05) reduced the blood glucose levels via a subsequent significant shift in the serum insulin levels both in the in vivo animal model and in the test subjects of the phase I clinical trial. No prominent effects on the beta cells histomorphology were noted in this study. Moxifloxacin showed a more significant effect than Gemifloxacin. The insulinotropic effect was comparable to the effect of Glibenclamide. It is concluded that Moxifloxacin and Gemifloxacin have a significant blood glucose lowering effect mediated through insulinotropic action. (Clinical Trials.gov identifier: NCT04692623).

12.
Nat Prod Res ; 36(16): 4238-4242, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34652246

RESUMEN

The antidiarrheal effect of methanolic extract of Trillium govanianum Wall. ex D. Don (Melanthiaceae alt. Trilliaceae) was studied at doses of 12.5, 25, and 50 mg/kg in different animal models of diarrhea including castor oil (6 mL/kg), magnesium sulfate (2 gm/kg), sodium picosulfate (2 mL/kg) and lactitol (0.25 mL/kg). The antispasmodic effect of T. govanianum was studied on isolated rabbit's jejunum, using acetylcholine as tissue stabiliser and verapamil as calcium channel blocker. T. govanianum attenuated the diarrhea by producing a significant decrease in the number and weight of stool, and an increase in stool latency time. T. govanianum completely inhibited both spontaneous as well as high potassium induced contractions of isolated rabbit's jejunum, which was analogous to verapamil. Moreover, T. govanianum produced a right shift in calcium concentration response curve, confirming its calcium channel blocking activity. These findings provide scientific ground to its medicinal use in diarrhea and gut spasms.


Asunto(s)
Antidiarreicos , Trillium , Animales , Antidiarreicos/farmacología , Calcio , Canales de Calcio/farmacología , Canales de Calcio/uso terapéutico , Diarrea/tratamiento farmacológico , Yeyuno/fisiología , Parasimpatolíticos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Conejos , Rizoma , Verapamilo/farmacología , Verapamilo/uso terapéutico
13.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885751

RESUMEN

Cognitive decline in dementia is associated with deficiency of the cholinergic system. In this study, five mono-carbonyl curcumin analogs were synthesized, and on the basis of their promising in vitro anticholinesterase activities, they were further investigated for in vivo neuroprotective and memory enhancing effects in scopolamine-induced amnesia using elevated plus maze (EPM) and novel object recognition (NOR) behavioral mice models. The effects of the synthesized compounds on the cholinergic system involvement in the brain hippocampus and their binding mode in the active site of cholinesterases were also determined. Compound h2 (p < 0.001) and h3 (p < 0.001) significantly inhibited the cholinesterases and reversed the effects of scopolamine by significantly reducing TLT (p < 0.001) in EPM, while (p < 0.001) increased the time exploring the novel object. The % discrimination index (DI) was significantly increased (p < 0.001) in the novel object recognition test. The mechanism of cholinesterase inhibition was further validated through molecular docking study using MOE software. The results obtained from the in vitro, in vivo and ex vivo studies showed that the synthesized curcumin analogs exhibited significantly higher memory-enhancing potential, and h3 could be an effective neuroprotective agent. However, more study is suggested to explore its exact mechanism of action.


Asunto(s)
Amnesia/tratamiento farmacológico , Colinesterasas/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Curcumina/farmacología , Demencia/tratamiento farmacológico , Amnesia/inducido químicamente , Amnesia/diagnóstico por imagen , Amnesia/patología , Animales , Dominio Catalítico/efectos de los fármacos , Colinérgicos/síntesis química , Colinérgicos/química , Colinérgicos/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Curcumina/análogos & derivados , Curcumina/síntesis química , Curcumina/química , Demencia/inducido químicamente , Demencia/diagnóstico por imagen , Demencia/patología , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Escopolamina/toxicidad
14.
Pak J Pharm Sci ; 34(5(Supplementary)): 1983-1988, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34836870

RESUMEN

Moxifloxacin and gemifloxacin were tested on isolated rabbits' jejunal preparations as little is known about its effects on gastrointestinal tissues. Moxifloxacin and gemifloxacin were tested in concentrations 0.01-10µg/mL for possible effect(s) on isolated rabbits' jejunal preparations. The drugs were applied on spontaneous, on low K+ (20mM)-induced contractions and on high K+ (80mM)-induced contractions. Response was plotted as % of its respective controls. EC50 for Moxifloxacin and Gemifloxacin on spontaneous (without Glibenclamide) contractions are 2.83±0.5µg/mL and 1.11±0.2µg/mL, respectively. Moxifloxacin and Gemifloxacin relaxed the low K+ (20mM) -induced contractions, which were inhibited in presence of Glibenclamide (3µM). Our result indicates that the relaxant activity of Moxifloxacin and Gemifloxacin is mediated possibly through activation of ATP-sensitive potassium channels (KATP). The relaxant effect of Moxifloxacin and Gemifloxacin is predominantly mediated by activation of ATP-Sensitive potassium channels (KATP), which could be cause of one of relaxing mechanisms.


Asunto(s)
Gemifloxacina/farmacología , Canales KATP/efectos de los fármacos , Moxifloxacino/farmacología , Parasimpatolíticos/farmacología , Animales , Bioensayo , Femenino , Gliburida/farmacología , Yeyuno/efectos de los fármacos , Masculino , Contracción Muscular/efectos de los fármacos , Relajantes Musculares Centrales/farmacología , Relajación Muscular/efectos de los fármacos , Conejos
15.
Pak J Pharm Sci ; 30(4): 1351-1356, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29039337

RESUMEN

Bisthiourea derivatives were synthesized by the reaction of benzoylisothiocyanate and diamines to give 1,2-Bis(N'-benzoylthioureidobenzene (1), 1,3-di(benzoylthioureido)benzene (2) and 1,4-di(benzoylthioureido)benzene (3) in acetone. Acute toxicity study revealed that LD50 of compound (1) and (3) is 120 mg/kg body weight. Visceral pain induced by injecting i.p acetic acid in mice were strongly inhibited by all the compounds. 94.65, 95.25 and 85.54% analgesic activity were observed in compounds (1), (2) and (3) at 15 mg/kg and (2) and (3) shows 97.63 and 96.42% at 30 mg/kg body weight respectively while (1) gives 100% analgesic activity. 100% cytotoxicity was observed in compounds (2) and (3) and 96% in compound (1) at 750 ppm. The results suggest that these compounds may have potential values for treatment of cancer and painful disorders.


Asunto(s)
Analgésicos/síntesis química , Analgésicos/farmacología , Dimensión del Dolor/efectos de los fármacos , Tiourea , Ácido Acético , Animales , Artemia/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Dosificación Letal Mediana , Masculino , Ratones , Tiourea/análogos & derivados , Tiourea/síntesis química , Tiourea/farmacología , Tiourea/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...