Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Front Vet Sci ; 11: 1351693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681848

RESUMEN

Introduction: The utilization of fauna and fauna-based byproducts in ethnomedicinal usages has been a longstanding human activity, practiced across various cultures worldwide. This study focuses on investigating the utilization of animal-based traditional medicine by the people of Pakistan, specifically in the Gujranwala area. Methods: Data collection took place from January to September 2019 through interviews with local communities. Ethnomedicinal applications of animal products were analyzed using several indices, including Relative Frequency of Citation (RFC), Relative Popularity Level (RPL), Folk Use Value (FL), and Relative Occurrence Percentage (ROP). Results: The study identified the use of different body parts of 54 species of animals in treating various diseases and health issues. These include but are not limited to skin infections, sexual problems, pain management (e.g., in the backbone and joints), eyesight issues, immunity enhancement, cold, weakness, burns, smallpox, wounds, poisoning, muscular pain, arthritis, diabetes, fever, epilepsy, allergies, asthma, herpes, ear pain, paralysis, cough, swelling, cancer, bronchitis, girls' maturity, and stomach-related problems. Certain species of fauna were noted by informers with high "frequency of citation" (FC), ranging from 1 to 77. For instance, the black cobra was the most frequently cited animal for eyesight issues (FC = 77), followed by the domestic rabbit for burn treatment (FC = 67), and the Indus Valley spiny-tailed ground lizard for sexual problems (FC = 66). Passer domesticus and Gallus gallus were noted to have the highest ROP value of 99. Discussion: The findings of this study provide valuable preliminary insights for the conservation of fauna in the Gujranwala region of Punjab, Pakistan. Additionally, screening these animals for medicinally active compounds could potentially lead to the development of novel animal-based medications, contributing to both traditional medicine preservation and modern pharmaceutical advancements.

2.
Arch Microbiol ; 206(4): 149, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466437

RESUMEN

Domestic yak (Bos grunniens) is an economically important feature of the mountainous region of Gilgit-Baltistan in Pakistan where agriculture is restricted and yaks play multiple roles which includes being a source of milk, meat, hides, fuel and power. However little is known about the parasitic infections in Pakistani yaks. Aim of this research was to report the prevalence and genetic diversity of protozoa parasite (Theileria ovis, 18 S rDNA gene was targeted) and an obligate bacterium (Anaplasma marginale, msp-1 gene was amplified) in the blood that was sampled from 202 yaks collected from four districts in Gilgit-Baltistan during January 2023 till January 2024. Results revealed that 6/202 (3%) yaks were of Theileria ovis while 8/202 (4%) were Anaplasma marginale infected. Positive PCR products of both parasites were confirmed by DNA sequencing and their similarity with previously available pathogen sequences was determined by BLAST analysis. Phylogenetic tree indicated that isolates of both parasites displayed genetic. Anaplasma marginale infection varied with the sampling districts and Shigar district had the highest rate of bacterial infection. Cows were significantly more prone to Theileria ovis infection than bulls. Calf and hybrid yaks were more prone to Anaplasma marginale infection. In conclusion, this is the first report that yaks residing the Gilgit-Baltistan region in Pakistan are infected with Theileria ovis and Anaplasma marginale. Similar larger scales studies are recommended in various regions of Gilgit-Baltistan to document the infection rates of these parasites to formulate strategies that will lead to the effective control of these pathogens.


Asunto(s)
Anaplasma marginale , Anaplasmosis , Theileria , Garrapatas , Femenino , Bovinos , Animales , Ovinos , Anaplasma marginale/genética , Theileria/genética , Pakistán/epidemiología , Anaplasma/genética , Prevalencia , Garrapatas/microbiología , Garrapatas/parasitología , Filogenia , Anaplasmosis/epidemiología , Anaplasmosis/microbiología
3.
PeerJ ; 12: e16782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435990

RESUMEN

Ants belonging to the Monomorium indicum (Formicidae: Hymenoptera) species are ubiquitous insects that are commonly associated with household settings in Pakistan. Packaged foodstuffs are easily destroyed by household ants when packaging is made with materials that have a high susceptibility. This study evaluated the susceptibility of three common flexible plastic packaging materials namely: opaque polyethylene, transparent polyethylene and polypropylene, which were each tested at thicknesses of 0.02 mm for their susceptibility against M. indicum. Except opaque polyethylene which is only available at 0.02 mm thickness, both transparent polyethylene and polypropylene were tested at higher thickness of 0.04 mm and 0.06 mm also against M. indicum. In order to simulate household settings, experiments were conducted at the faculty building of the agriculture and environment department of The Islamia University of Bahawalpur, Pakistan during summer vacations when the building was quiet. Different corners were selected near water sources for maximum exposure to the largest number of ants. Experimental cages used for the experiment were built with wood and 2 mm iron gauze to allow only ants to enter the cages. Daily activity of ants was used as an infestation source in cages. Experiments were run over three time spans of fifteen days each from June 20th 2022 to August 15th 2022. Results showed all packaging materials were susceptible against M. indicum at the 0.02 mm thickness level. Polypropylene was susceptible at 0.04 mm thickness but resistant to ants at 0.06 mm thickness, whereas polyethylene was still susceptible to ants at the higher thickness of 0.06 mm. Correlation of packaging damage with weather factors showed that temperature had a positive relationship, while relative humidity had a negative association with M. indicum attack. Overall correlation of packaging damage with packaging thickness showed packaging thickness was negatively associated with packaging damage from the ants. Because major cutting role is performed by the mandibles, we studied mandibles of ants and three frequent pests of packaged foodstuff namely Rhyzopertha dominica, Tribolium castaneum and Trogoderma granarium. The results showed that ants had the largest mandible and frontal mandibular tooth lengths compared with the mandibles and frontal teeth of the common stored product pests, indicating M. indicum household ants have a higher pest status for packaged foodstuffs compared to common stored product pests. Although the thickness of the flexible plastic packaging was a major factor against household ants, the study results recommend the use of polypropylene with a thickness of at least 0.06 mm as foodstuff packaging against household ants compared with polyethylene packaging, which was found to be susceptible to ants even at 0.06 mm thickness.


Asunto(s)
Hormigas , Escarabajos , Animales , Polipropilenos , Polietileno
4.
RSC Adv ; 14(9): 5959-5974, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38362070

RESUMEN

Heavy metal contamination in water is a serious environmental issue due to the toxicity of metals like lead. This study developed zeolite and multi-walled carbon nanotube (MWCNT) incorporated polyacrylonitrile (PAN) nanofibers via needleless electrospinning and examined their potential for lead ion adsorption from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) and artificial neural network (ANN) modeling approaches. The adsorbent displayed efficient lead removal of 84.75% under optimum conditions (adsorbent dose (2.21 g), adsorption time (207 min), temperature (48 °C), and initial concentration (62 ppm)). Kinetic studies revealed that the adsorption followed pseudo-first-order kinetics governed by interparticle diffusion. Isotherm analysis indicated Langmuir monolayer adsorption with improved 5.90 mg g-1 capacity compared to pristine PAN nanofibers. Thermodynamic parameters suggested the adsorption was spontaneous and endothermic. This work demonstrates the promise of electrospun zeolite/MWCNT nanofibers as adsorbents for removing lead from wastewater.

5.
Sci Rep ; 14(1): 1403, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228686

RESUMEN

Selected volatile organic compounds (VOCs), such as benzene (C6H6), cyclohexane (C6H12), isoprene (C5H8), cyclopropanone (C3H4O), propanol (C3H8O), and butyraldehyde butanal (C4H8O), in exhaled human breath can act as indicators or biomarkers of lung cancer diseases. Detection of such VOCs with low density would pave the way for an early diagnosis of the disease and thus early treatment and cure. In the present investigation, the density-functional theory (DFT) is applied to study the detection of the mentioned VOCs on Ti3C2TX MXenes, saturated with the functional groups Tx = O, F, S, and OH. For selectivity, comparative sensing of other interfering air molecules from exhaled breath, such as O2, N2, CO2, and H2O is further undertaken. Three functionalization (Tx = O, F, and S) are found promising for the selective detection of the studied VOCs, in particular Ti3C2O2 MXenes has shown distinct sensor response toward the C5H8, C6H6, C6H12, and C3H4O. The relatively strong physisorption ([Formula: see text]), triggered between VOC and MXene due to an enhancement of van der Waals interaction, is found responsible to affect the near Fermi level states, which in turn controls the conductivity and consequently the sensor response. Meanwhile, such intermediate-strength interactions remain moderate to yield small desorption recovery time (of order [Formula: see text] using visible light at room temperature. Thus, Ti3C2O2 MXenes are found promising candidate material for reusable biosensor for the early diagnosis of lung cancer diseases through the VOC detection in exhaled breath.


Asunto(s)
Neoplasias Pulmonares , Compuestos Orgánicos Volátiles , Humanos , Neoplasias Pulmonares/diagnóstico , Titanio , Biomarcadores de Tumor , Pruebas Respiratorias , Pulmón
6.
Avian Pathol ; 53(2): 134-145, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037737

RESUMEN

RESEARCH HIGHLIGHTS: Virulent NDV genotypes were repeatedly isolated from pigeons.Evidence of epidemiological links among viruses isolated from various locations.Distinct phylogenetic branches suggest separate, simultaneous evolution of NDVs.Study information could be helpful in the development of an effective vaccine.


Asunto(s)
Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Animales , Columbidae , Variación Genética , Genotipo , Enfermedad de Newcastle/epidemiología , Pakistán , Filogenia
7.
Nanoscale ; 16(1): 262-272, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38054842

RESUMEN

Despite the prodigious potential of lithium-sulfur (Li-S) batteries as future rechargeable electrochemical systems, their commercial implementation is hindered by several vital issues, including the shuttle effect and sluggish migration of lithium-polysulfides leading to rapid capacity fading. Here, we systematically investigate the potential of first-row two-dimensional transition metal carbides (TMCs) as sulfur cathodes for Li-S batteries. The adsorption strength of lithium-polysulfides on TMCs is induced by the amount of charge transfer from the former to the latter and the proposed periodic relationship between sulfur in Li2S and 3d-transition metals. Our findings show that the VC nanosheet possesses immense anchoring potential and exhibits a comparatively low migration energy barrier for lithium-ion and Li2S molecules. Additionally, we report ab initio molecular dynamics simulations for lithiated polysulfide species anchored on a TMC-based model with a liquid-electrolyte medium. The microscopic reaction mechanism, revealed by the evolution of the reaction voltage during lithiation, demonstrates that the dissolution of high-order lithium-polysulfides in the electrolytes can be prevented due to their robust interaction with TMC-based cathode materials. These appealing features suggest that TMCs present colossal performance improvements for anchoring lithium-polysulfides, stimulating the active design of sulfur cathodes for practical Li-S batteries.

8.
Materials (Basel) ; 16(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38068090

RESUMEN

This paper investigates the development of fabric materials using several blends of inherently fire-resistant (FR) fibers and various knitted structures. The samples are evaluated with respect to their performance and comfort-related properties. Inherently fire-resistant fibers, e.g., Nomex, Protex, carbon and FR viscose, were used to develop different structures of knitted fabrics. Cross-miss, cross-relief, and vertical tubular structures were knitted by using optimum fiber blend proportions and combinations of stitches. Several important aspects of the fabric samples were investigated, e.g., their physical, mechanical and serviceability performance. Thermo-physiological and tactile/touch-related comfort properties were evaluated in addition to flame resistance performance. An analysis of mechanical performance indicated that the knitted structure has a significant influence on the tensile strength, bursting strength and pilling resistance. The cross-relief structure proved to be the strongest followed by the cross-miss and vertical tubular structures. The FR station suits made from 70:30 Protex/Nomex exhibited the best combination of tensile and bursting strength; therefore, this material is recommended for making a stable and durable station suit. Interestingly, it was also concluded from the experimental study that knitted samples with a cross-relief structure exhibit the best fire-resistance performance. Fiber blends of 70:30 Protex/Nomex and 70:30 Nomex/carbon were found to be optimum in terms of overall performance. The best flame resistance was achieved with Nomex:carbon fiber blends. These results were confirmed with vertical flammability tests, TGA, DTGA and cone calorimetry analysis. The optimization of blend composition as well as knitting structure/architecture is a crucial finding toward designing the best FR station suit in terms of mechanical, dimensional, thermal, thermo-physiological and flame resistance performance.

9.
Nat Commun ; 14(1): 7803, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016956

RESUMEN

Indicine cattle, also referred to as zebu (Bos taurus indicus), play a central role in pastoral communities across a wide range of agro-ecosystems, from extremely hot semiarid regions to hot humid tropical regions. However, their adaptive genetic changes following their dispersal into East Asia from the Indian subcontinent have remained poorly documented. Here, we characterize their global genetic diversity using high-quality whole-genome sequencing data from 354 indicine cattle of 57 breeds/populations, including major indicine phylogeographic groups worldwide. We reveal their probable migration into East Asia was along a coastal route rather than inland routes and we detected introgression from other bovine species. Genomic regions carrying morphology-, immune-, and heat-tolerance-related genes underwent divergent selection according to Asian agro-ecologies. We identify distinct sets of loci that contain promising candidate variants for adaptation to hot semi-arid and hot humid tropical ecosystems. Our results indicate that the rapid and successful adaptation of East Asian indicine cattle to hot humid environments was promoted by localized introgression from banteng and/or gaur. Our findings provide insights into the history and environmental adaptation of indicine cattle.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Bovinos , Alelos , Variación Genética , Secuenciación Completa del Genoma , Polimorfismo de Nucleótido Simple
10.
PLoS One ; 18(8): e0282761, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37585485

RESUMEN

The present study reports the population structure, genetic admixture and phylogeography of cattle breeds of Sri Lanka viz. Batu Harak, Thawalam and White cattle. Moderately high level of genetic diversity was observed in all the three Sri Lankan zebu cattle breeds. Estimates of inbreeding for Thawalam and White cattle breeds were relatively high with 6.1% and 7.2% respectively. Genetic differentiation of Sri Lankan Zebu (Batu Harak and White cattle) was lowest with Red Sindhi among Indus Valley Zebu while it was lowest with Hallikar among the South Indian cattle. Global F statistics showed 6.5% differences among all the investigated Zebu cattle breeds and 1.9% differences among Sri Lankan Zebu breeds. The Sri Lankan Zebu cattle breeds showed strong genetic relationships with Hallikar cattle, an ancient breed considered to be ancestor for most of the Mysore type draught cattle breeds of South India. Genetic admixture analysis revealed high levels of breed purity in Lanka White cattle with >97% Zebu ancestry. However, significant taurine admixture was observed in Batu Harak and Thawalam cattle. Two major Zebu haplogroups, I1 and I2 were observed in Sri Lankan Zebu with the former predominating the later in all the three breeds. A total of 112 haplotypes were observed in the studied breeds, of which 50 haplotypes were found in Sri Lankan Zebu cattle. Mismatch analysis revealed unimodal distribution in all the three breeds indicating population expansion. The sum of squared deviations (SSD) and raggedness index were non-significant in both the lineages of all the three breeds except for I1 lineage of Thawalam cattle (P<0.01) and I2 lineage of Batu Harak cattle (P<0.05). The results of neutrality tests revealed negative Tajima's D values for both the lineages of Batu Harak (P>0.05) and White cattle (P>0.05) indicating an excess of low frequency polymorphisms and demographic expansion. Genetic dilution of native Zebu cattle germplasm observed in the study is a cause for concern. Hence, it is imperative that national breeding organizations consider establishing conservation units for the three native cattle breeds to maintain breed purity and initiate genetic improvement programs.


Asunto(s)
Bovinos , Variación Genética , Animales , Bovinos/genética , Variación Genética/genética , Endogamia/estadística & datos numéricos , Filogeografía , Polimorfismo Genético , Sri Lanka , Masculino , Femenino
11.
Phys Chem Chem Phys ; 25(29): 19612-19619, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37435853

RESUMEN

MXenes, a family of superior 2D materials, have been intensively investigated because they have many promising properties, particularly high-performance energy storage and high flexibility. To approach the expected critical benchmarks of such materials, the strain dependence of the atomic structure is widely considered for tuning the related properties. In this work, by means of density functional theory, we demonstrate the potential application of the strained 2H phase of Mo2C-based MXenes (Mo2C and Mo2CO2) as anode materials for lithium-ion batteries (LIBs). Adsorption and diffusion of Li on the surfaces of both materials and the impact of biaxial strain (εb) in the range of -4% to 4% are insightfully investigated. The lowest adsorption energy of Mo2C is -0.96 eV, and that of Mo2CO2 is -3.13 eV at εb = 0%. The diffusion of Li ions, considering the pathway between the first two most favorable adsorption sites, reveals that the biaxial strain refinement under compressive strain decreases the energy barrier, but the induction of tensile strain increases it in both MXenes. The ranges of the energy barriers of Li-ion adsorption on the surfaces of Mo2C and Mo2CO2 are 31-57 meV and 177-229 meV, respectively. Interestingly, the storage capacity of Li can reach three layers corresponding to a comparably high theoretical capacity of 788.61 mA h g-1 for Mo2C and 681.64 mA h g-1 for Mo2CO2. The atomic configurations are stable, as verified by the negative adsorption energy as well as the slightly distorted structures, by using ab initio molecular dynamics (AIMD) simulations at 400 K. Moreover, average open circuit voltages (OCVs) of 0.35 V and 0.63 V (at εb = 0%) are reported for Mo2C and Mo2CO2, respectively. Furthermore, the tensile strain results in an increase in the OCVs, while compression has the opposite effect. These computational results provide some basic information on the behaviors of Li-ion adsorption and diffusion on Mo2C-based MXenes upon tuning biaxial strain. They also give a guideline on what conditions are appropriate for practically implementing these MXenes as electrode materials in LIBs.

12.
Environ Sci Pollut Res Int ; 30(35): 84099-84109, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37355509

RESUMEN

Oxidative stress (OS) is a phenomenon induced by excessive production and accumulation of reactive oxygen species (ROS) in living cells. These increased ROS productions connected, coupled with many neurological and physiological diseases. Several antioxidants were utilized recently to combat OS, and lactic acid bacteria have a potent radical-scavenging activity to minimize OS. The present work was designed to find out the protective effects of Lactobacillus brevis MG000874 (L. brevis MG000874) against oxidative injuries induced by D-galactose (D-gal) in vivo and to explore the gene expression of OS-related gene mice. Sixty male mice were randomly split into six groups. The first four groups were different control groups as no treatment (N), positive (G), probiotic (B), and ascorbic acid (A); the remaining two groups were treatment groups such as probiotic treatment (BG) and ascorbic acid treatment (AG). L. brevis MG000874 (0.2 ml of 1010 CFU/ml) and ascorbic acid (0.2 ml of 25 mg/ml) were administered orally daily for 5 weeks. It was revealed that these significantly affect the weight of treated mice: 40.22 ± 1.5 and 33.0 ± 0.57 g on days 0 and 36, respectively. D-gal induction in mice declined the levels of SOD and CAT determined by spectrophotometer. Administration of L. brevis MG000874 improved the antioxidant status of the stress mice and recovered the antioxidant activities of SOD and CAT enzymes. In addition, L. brevis MG000874-altered gene expression of OS marker at the messenger RNA (mRNA) levels was determined by RT-PCR in the mouse model. L. brevis MG000874 significantly improved the GST, GPX, SOD, CAT, and ß-actin levels in the kidney and the liver of the D-gal-induced mice (p < 0.05). Moreover, the histological investigation indicated that L. brevis MG000874 mitigated damage to the kidney and liver effectively in mice induced by D-gal. Therefore, it could be concluded from the current results that L. brevis MG000874 may act as a powerful antioxidant agent, and this study can provide the baseline data for drug development against OS-linked diseases.


Asunto(s)
Antioxidantes , Levilactobacillus brevis , Masculino , Ratones , Animales , Antioxidantes/metabolismo , Galactosa/metabolismo , Galactosa/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Hígado , Riñón , Modelos Animales de Enfermedad , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Superóxido Dismutasa/metabolismo , Expresión Génica , Envejecimiento
13.
Energy Build ; 294: 113204, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37342253

RESUMEN

The COVID19 pandemic has impacted the global economy, social activities, and Electricity Consumption (EC), affecting the performance of historical data-based Electricity Load Forecasting (ELF) algorithms. This study thoroughly analyses the pandemic's impact on these models and develop a hybrid model with better prediction accuracy using COVID19 data. Existing datasets are reviewed, and their limited generalization potential for the COVID19 period is highlighted. A dataset of 96 residential customers, comprising 36 and six months before and after the pandemic, is collected, posing significant challenges for current models. The proposed model employs convolutional layers for feature extraction, gated recurrent nets for temporal feature learning, and a self-attention module for feature selection, leading to better generalization for predicting EC patterns. Our proposed model outperforms existing models, as demonstrated by a detailed ablation study using our dataset. For instance, it achieves an average reduction of 0.56% & 3.46% in MSE, 1.5% & 5.07% in RMSE, and 11.81% & 13.19% in MAPE over the pre- and post-pandemic data, respectively. However, further research is required to address the varied nature of the data. These findings have significant implications for improving ELF algorithms during pandemics and other significant events that disrupt historical data patterns.

14.
Front Plant Sci ; 14: 1144145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255552

RESUMEN

Soil and air pollution caused by heavy metals and limestone dust are prevalent in urban environments and they are an alarming threat to the environment and humans. This study was designed to investigate the changes in morphological and physiological traits of three urban tree species seedlings (Bombax ceiba, Conocarpus lancifolius, and Eucalyptus camaldulensis) under the individual as well as synergetic effects of heavy metal lead (Pb) and limestone dust toxicities. The tree species were grown under controlled environmental conditions with nine treatments consisting of three levels of dust (0, 10, and 20 g) and three levels of Pb contaminated water irrigation (0, 5, and 10 mg L-1). The results depicted that the growth was maximum in T1 and minimum in T9 for all selected tree species. B. ceiba performed better under the same levels of Pb and limestone dust pollution as compared with the other two tree species. The B. ceiba tree species proved to be the most tolerant to Pb and limestone pollution by efficiently demolishing oxidative bursts by triggering SOD, POD, CAT, and proline contents under different levels of lead and dust pollution. The photosynthetic rate, stomatal conductance, evapotranspiration rate, and transpiration rate were negatively influenced in all three tree species in response to different levels of lead and dust applications. The photosynthetic rate was 1.7%, 3.1%, 7.0%, 11.03%, 16.2%, 23.8%, 24.8%, and 30.7%, and the stomatal conductance was 5%, 10.5%, 23.5%, 40%, 50.01%, 61.5%, 75%, and 90.9%, greater in T2, T3, T4, T5, T6, T7, T8, and T9 plants of B. ceiba, respectively, as compared to T1. Based on the findings, among these three tree species, B. ceiba is strongly recommended for planting in heavy metal and limestone dust-polluted areas followed by E. camaldulensis and C. lancifolius due to their better performance and efficient dust and heavy metal-scavenging capability.

15.
Plants (Basel) ; 12(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37050182

RESUMEN

In the present research, selenium nanoparticles (SeNPs) were tested for their use as seed priming agents under field trials on tomatoes (Solanum lycopersicum L.) for their efficacy in conferring drought tolerance. Four different seed priming regimes of SeNPs were created, comprising 25, 50, 75, and 100 ppm, along with a control treatment of 0 ppm. Seeds were planted in split plots under two irrigation regimes comprising water and water stress. The results suggest that seed priming with SeNPs can improve tomato crop performance under drought stress. Plants grown with 75 ppm SeNPs-primed seeds had lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels by 39.3% and 28.9%, respectively. Seed priming with 75 ppm SeNPs further increased the superoxide dismutase (SOD) and catalase (CAT) functions by 34.9 and 25.4%, respectively. The same treatment increased the total carotenoids content by 13.5%, α-tocopherols content by 22.8%, total flavonoids content by 25.2%, total anthocyanins content by 19.6%, ascorbic acid content by 26.4%, reduced glutathione (GSH) content by 14.8%, and oxidized glutathione (GSSG) content by 13.12%. Furthermore, seed priming with SeNPs upregulated the functions of enzymes of ascorbate glutathione cycle. Seed priming with SeNPs is a smart application to sustain tomato production in arid lands.

16.
Biology (Basel) ; 12(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37106809

RESUMEN

Numerous investigations on plant ethnomedicinal applications have been conducted; however, knowledge about the medicinal use of wild animals is still limited. This present study is the second on the medicinal and cultural meaning of avian and mammalian species used by the population in the surrounding area of the Ayubia National Park, KPK, Pakistan. Interviews and meetings were compiled from the participants (N = 182) of the study area. The relative frequency of citation, fidelity level, relative popularity level, and rank order priority indices were applied to analyze the information. Overall, 137 species of wild avian and mammalian species were documented. Of these, 18 avian and 14 mammalian species were utilized to treat different diseases. The present research showed noteworthy ethno-ornithological and ethno-mammalogical knowledge of local people and their connection with fauna, which might be useful in the sustainable utilization of the biological diversity of the Ayubia National Park, Khyber Pakhtunkhwa. Furthermore, in vivo and/or in vitro examination of the pharmacological activities of species with the highest fidelity level (FL%) as well as frequency of mention (FM) might be important for investigations on faunal-based new drugs.

17.
PLoS One ; 18(3): e0282531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36862701

RESUMEN

Mung bean (Vigna radiata L.) grown under heavy metals such as cadmium stress shows poor growth patterns and yield attributes which can be extenuated by the application of calcium and organic manure to the contaminated soil. The present study was designed to decipher the calcium oxide nanoparticles and farmyard manure-induced Cd stress tolerance through improvement in physiological and biochemical attributes of mung bean plants. A pot experiment was conducted by defining appropriate positive and negative controls under differential soil treatments with farmyard manure (1% and 2%) and calcium oxide nanoparticles (0, 5, 10, and 20 mg/L). Root treatment of 20 mg/L calcium oxide nanoparticles (CaONPs) and 2% farmyard manure (FM) reduced the cadmium acquisition from the soil and improved growth in terms of plant height by 27.4% compared to positive control under Cd stress. The same treatment improved shoot vitamin C (ascorbic acid) contents by 35% and functioning of antioxidant enzymes catalase and phenyl ammonia lyase by 16% and 51%, respectively and the levels of malondialdehyde and hydrogen peroxide decreased by 57% and 42%, respectively with the application of 20 mg/L CaONPs and 2% of FM. The gas exchange parameters such as stomata conductance and leaf net transpiration rate were improved due to FM mediated better availability of water. The FM improved soil nutrient contents and friendly biota culminating in good yields. Overall, 2% FM and 20 mg/L CaONPs proved as the best treatment to reduce cadmium toxicity. The growth, yield, and crop performance in terms of physiological and biochemical attributes can be improved by the application of CaONPs and FM under the heavy metal stress.


Asunto(s)
Vigna , Cadmio/toxicidad , Estiércol , Compuestos de Calcio/farmacología , Ácido Ascórbico
18.
Carbohydr Polym ; 307: 120623, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36781276

RESUMEN

Porphyrin-based metal organic frameworks (MOFs) with efficient bactericidal performance have increasingly attracted attention in photodynamic inactivation materials. However, low reactive oxygen species (ROS) yield and drug residue hazards of current porphyrin-MOFs materials lead to unsatisfactory clinical therapeutic effects. In this paper, carbon quantum dots (CQDs) were encapsulated into PCN-224, which enhanced the photodynamic activity of the MOFs through fluorescence resonance energy transfer (FRET) process. Singlet oxygen (1O2) detection confirmed that the photodynamic activity of CQDs-doped PCN-224 (CQDs@PCN-224) was enhanced than that of pristine PCN-224 under illumination. Furthermore, the CQDs@PCN-224 were firmly embedded into bacterial cellulose (BC) nanofibrous membranes by using an eco-friendly biosynthetic approach, efficiently preventing MOFs leakage during use. The results of bactericidal assays demonstrated that BC/CQDs@PCN-224 membrane with higher photodynamic activity causes more severe disruption to bacterial structure and possesses better antibacterial efficiency (>99.99 % reduction of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli O157:H7 within 30 min) than BC/PCN-224 membrane under visible light illumination (500 W, 15 cm height, λ ≥ 420 nm). In addition, the biosynthesized BC/CQDs@PCN-224 membrane showed good hemocompatibility and low cytotoxicity, revealing that the BC- and MOFs-based material with enhanced PDI efficiency and satisfying safety has great potential in medical fields.


Asunto(s)
Porfirinas , Puntos Cuánticos , Carbono/química , Transferencia Resonante de Energía de Fluorescencia , Puntos Cuánticos/química , Luz , Bacterias
19.
Foods ; 12(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36832794

RESUMEN

We previously reported a sustainable food waste management approach to produce an acceptable organic liquid fertiliser for recycling food waste called "FoodLift." This study follows our previous work to evaluate the macronutrients and cation concentrations in harvested structural parts of lettuce, cucumber, and cherry tomatoes produced using food waste-derived liquid fertiliser (FoodLift) and compare them against commercial liquid fertiliser (CLF) under hydroponic conditions. N and P concentrations in the structural parts of lettuce and the fruit and plant structural parts of cucumber appear to be similar between FoodLift and CLF (p > 0.05), with significantly different N concentrations in the various parts of cherry tomato plants (p < 0.05). For lettuce, N and P content varied from 50 to 260 g/kg and 11 to 88 g/kg, respectively. For cucumber and cherry tomato plants, N and P concentrations ranged from 1 to 36 g/kg and 4 to 33 g/kg, respectively. FoodLift was not effective as a nutrient source for growing cherry tomatoes. Moreover, the cation (K, Ca, and Mg) concentrations appear to significantly differ between FoodLift and CLF grown plants (p < 0.05). For example, for cucumber, Ca content varied from 2 to 18 g/kg for FoodLift grown plants while Ca in CLF-grown cucumber plants ranged from 2 to 28 g/kg. Overall, as suggested in our previous work, FoodLift has the potential to replace CLF in hydroponic systems for lettuce and cucumber. This will lead to sustainable food production, recycling of food waste to produce liquid fertiliser, and will promote a circular economy in nutrient management.

20.
J Memb Sci ; 672: 121473, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36785656

RESUMEN

The COVID-19 pandemic has caused serious social and public health problems. In the field of personal protection, the facial masks can prevent infectious respiratory diseases, safeguard human health, and promote public safety. Herein, we focused on preparing a core filter layer for masks using electrospun polyvinyl butyral/apocynum venetum extract nanofibrous membranes (PVB/AVE NMs), with durable interception efficiency and antibacterial properties. In the spinning solution, AVE acted as a salt to improve electrical conductivity, and achieve long-lasting interception efficiency with adjustable pore size. It also played the role of an antibacterial agent in PVB/AVE NMs to achieve win-win effects. The hydrophobicity of PVB-AVE-6% was 120.9° whereas its filterability reached 98.3% when the pressure drop resistance was 142 Pa. PVB-AVE-6% exhibited intriguing properties with great antibacterial rates of 99.38% and 98.96% against S. aureus and E. coli, respectively. After a prolonged usability test of 8 h, the filtration efficiency of the PVB/AVE masks remained stable at over 97.7%. Furthermore, the antibacterial rates of the PVB/AVE masks on S. aureus and E. coli were 96.87% and 96.20% respectively, after using for 2 d. These results indicate that PVB/AVE NMs improve the protective performance of ordinary disposable masks, which has certain application in air filtration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...