Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Cell Commun Signal ; 22(1): 329, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877530

RESUMEN

Respiratory disorders are among the conditions that affect the respiratory system. The healthcare sector faces challenges due to the emergence of drug resistance to prescribed medications for these illnesses. However, there is a technology called CRISPR/Cas9, which uses RNA to guide DNA targeting. This technology has revolutionized our ability to manipulate and visualize the genome, leading to advancements in research and treatment development. It can effectively reverse epigenetic alterations that contribute to drug resistance. Some studies focused on health have shown that targeting genes using CRISPR/Cas9 can be challenging when it comes to reducing drug resistance in patients with respiratory disorders. Nevertheless, it is important to acknowledge the limitations of this technology, such as off-target effects, immune system reactions to Cas9, and challenges associated with delivery methods. Despite these limitations, this review aims to provide knowledge about CRISPR/Cas9 genome editing tools and explore how they can help overcome resistance in patients with respiratory disorders. Additionally, this study discusses concerns related to applications of CRISPR and provides an overview of successful clinical trial studies.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Resistencia a Medicamentos/genética , Animales , Trastornos Respiratorios/genética , Trastornos Respiratorios/terapia , Trastornos Respiratorios/tratamiento farmacológico , Enfermedades Respiratorias/genética , Enfermedades Respiratorias/tratamiento farmacológico , Enfermedades Respiratorias/terapia
2.
Pathol Res Pract ; 260: 155402, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885593

RESUMEN

Colorectal cancer (CRC) stands second in terms of mortality and third among the highest prevalent kinds of cancer globally. CRC prevalence is rising in moderately and poorly developed regions and is greater in economically advanced regions. Despite breakthroughs in targeted therapy, resistance to chemotherapeutics remains a significant challenge in the long-term management of CRC. Circular RNAs (circRNAs) have been involved in growing cancer therapy resistance, particularly in CRC, according to an increasing number of studies in recent years. CircRNAs are one of the novel subclasses of non-coding RNAs, previously thought of as viroid. According to studies, circRNAs have been recommended as biological markers for therapeutic targets and diagnostic and prognostic purposes. That is particularly notable given that the expression of circRNAs has been linked to the hallmarks of CRC since they are responsible for drug resistance in CRC patients; thereby, circRNAs are significant for chemotherapy failure. Moreover, knowledge concerning circRNAs remains relatively unclear despite using all these advanced techniques. Here, in this study, we will go over the most recent published work to highlight the critical roles of circRNAs in CRC development and drug resistance and highlight the main strategies to overcome drug resistance to improve clinical outcomes.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , ARN Circular , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , ARN Circular/genética , Resistencia a Antineoplásicos/genética , Biomarcadores de Tumor/genética , Antineoplásicos/uso terapéutico , Regulación Neoplásica de la Expresión Génica
3.
Pathol Res Pract ; 256: 155277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579577

RESUMEN

MicroRNAs (miRNAs) have essential roles in the etiology of breast cancer and are regarded as possible markers in this malignancy. In order to find new markers for breast cancer, the current study has measured expression level of four miRNAs, namely miR-125a, miR-106b, miR-96 and miR-92a-3p in the paired breast samples. Expression levels of miR-125a and miR-106b were higher in tumoral tissues compared with control tissues (Expression ratios (95% CI) = 4.01 (1.96-8.19) and 3.9 (1.95-7.81); P values = 0.0005 and 0.0003, respectively). miR-106b and miR-125a differentiated between malignant and non-malignant tissues with AUC values of 0.7 and 0.67, respectively. We detected association between expression of miR-106b and clinical stage (P = 0.03), in a way that its expression was the lowest in the advanced stages. Finally, significant relationships were found between miR-96 and miR-125a in both tumoral and non-tumoral specimens (ρ = 0.76 and 0.69, respectively). This nonparametric measure of rank correlation also showed relationship between miR-106b and miR-96 in both sets of samples (ρ = 0.63 and 0.61, respectively). Cumulatively, the assessed miRNAs, particularly miR-125a and miR-106b are putative targets for further expression and functional assays in breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Femenino , Humanos , Biomarcadores , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , MicroARNs/metabolismo
4.
Noncoding RNA Res ; 9(3): 811-830, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38590433

RESUMEN

Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.

5.
Acta Neurol Belg ; 124(4): 1295-1301, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38625499

RESUMEN

BACKGROUND: Current studies have shown emerging roles of lncRNAs in the pathobiology of neuropathic pain and migraine. METHODS: We have chosen five lncRNAs, namely, PVT1, DSCAM-AS, MEG3, LINC-ROR, and SPRY4-IT1 for assessment of their expression in the circulation of migraineurs. RESULTS: Expressions of PVT1 and MEG3 were higher in total migraineurs and both subgroups compared with controls (P < 0.0001). Meanwhile, expression of both lncRNA was higher in migraineurs with aura versus migraineurs without aura (P value < 0.0001 and = 0.01, respectively). Expression of DSCAM-AS1 was not different between any groups of patients compared with controls. Expression of LINC-ROR was elevated in total patients and patients with aura compared with controls (P value = 0.0002 and < 0.0001, respectively). It was also over-expressed in migraineurs with aura vs. migraineurs without aura (P = 0.01). Finally, expression of SPRY4-IT1 was higher in total patients and patients without aura compared with migraine-free persons (P values < 0.0001). Expressions of five mentioned lncRNAs were correlated in almost all study groups. In patients without aura, correlations were significant only for two pairs (SPRY4-IT1/PVT1 and SPRY4-IT1/DSCAM-AS1). PVT1 and MEG3 had the appropriate AUC, sensitivity and specificity values for separation of total migraineurs and both groups of patients from controls. The highest AUC value was reported for PVT1 in separation of migraineurs with aura from healthy controls (AUC = 0.98). CONCLUSION: Cumulatively, our study shows evidence for deregulation of lncRNAs in migraineurs.


Asunto(s)
Trastornos Migrañosos , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Femenino , Masculino , Adulto , Persona de Mediana Edad , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Migraña con Aura/genética
6.
Mol Biol Rep ; 51(1): 295, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340168

RESUMEN

The COVID-19 infection is a worldwide disease that causes numerous immune-inflammatory disorders, tissue damage, and lung dysfunction. COVID-19 vaccines, including those from Pfizer, AstraZeneca, and Sinopharm, are available globally as effective interventions for combating the disease. The severity of COVID-19 can be most effectively reduced by mesenchymal stromal cells (MSCs) because they possess anti-inflammatory activity and can reverse lung dysfunction. MSCs can be harvested from various sources, such as adipose tissue, bone marrow, peripheral blood, inner organs, and neonatal tissues. The regulation of inflammatory cytokines is crucial in inhibiting inflammatory diseases and promoting the presence of anti-inflammatory cytokines for infectious diseases. MSCs have been employed as therapeutic agents for tissue damage, diabetes, autoimmune diseases, and COVID-19 patients. Our research aimed to determine whether live or dead MSCs are more suitable for the treatment of COVID-19 patients. Our findings concluded that dead MSCs, when directly administered to the patient, offer advantages over viable MSCs due to their extended presence and higher levels of immune regulation, such as T-reg, B-reg, and IL-10, compared to live MSCs. Additionally, dead and apoptotic MSCs are likely to be more readily captured by monocytes and macrophages, prolonging their presence compared to live MSCs.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Recién Nacido , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Citocinas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
7.
Noncoding RNA Res ; 9(1): 236-252, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38192436

RESUMEN

Gastrointestinal cancers are a huge worldwide health concern, which includes a wide variety of digestive tract cancers. Circular RNAs (circRNAs), a kind of non-coding RNA (ncRNAs), are a family of single-stranded, covalently closed RNAs that have become recognized as crucial gene expression regulators, having an impact on several cellular functions in cancer biology. The gut microbiome, which consists of several different bacteria, actively contributes to the regulation of host immunity, inflammation, and metabolism. CircRNAs and the gut microbiome interact significantly to greatly affect the growth of GI cancer. Several studies focus on the complex functions of circRNAs and the gut microbiota in GI cancers, including esophageal cancer, colorectal cancer, gastric cancer, hepatocellular cancer, and pancreatic cancer. It also emphasizes how changed circRNA expression profiles and gut microbiota affect pathways connected to malignancy as well as how circRNAs affect hallmarks of gastrointestinal cancers. Furthermore, circRNAs and gut microbiota have been recommended as biological markers for therapeutic targets as well as diagnostic and prognostic purposes. Targeting circRNAs and the gut microbiota for the treatment of gastrointestinal cancers is also being continued to study. Despite significant initiatives, the connection between circRNAs and the gut microbiota and the emergence of gastrointestinal cancers remains poorly understood. In this study, we will go over the most recent studies to emphasize the key roles of circRNAs and gut microbiota in gastrointestinal cancer progression and therapeutic options. In order to create effective therapies and plan for the future gastrointestinal therapy, it is important to comprehend the functions and mechanisms of circRNAs and the gut microbiota.

8.
Clin. transl. oncol. (Print) ; 26(1): 16-38, jan. 2024. ilus, tab
Artículo en Inglés | IBECS | ID: ibc-229144

RESUMEN

Recent studies have revealed the impact of microRNAs (miRNAs) in the carcinogenic process. miR-424 is a miRNA whose role in this process is being to be identified. Experiments in the ovarian cancer, cervical cancer, hepatocellular carcinoma, neuroblastoma, breast cancer, osteosarcoma, intrahepatic cholangiocarcinoma, prostate cancer, endometrial cancer, non-small cell lung cancer, hemangioma and gastric cancer have reported down-regulation of miR-424. On the other hand, this miRNA has been found to be up-regulated in melanoma, laryngeal and esophageal squamous cell carcinomas, glioma, multiple myeloma and thyroid cancer. Expression of this miRNA is regulated by methylation status of its promoter. Besides, LINC00641, CCAT2, PVT1, LIN00657, LINC00511 and NNT-AS1 are among lncRNAs that act as molecular sponges for miR-424, thus regulating its expression. Moreover, several members of SNHG family of lncRNAs have been found to regulate expression of miR-424. This miRNA is also involved in the regulation of E2F transcription factors. The current review aims at summarization of the role of miR-424 in the process of cancer evolution and its impact on clinical outcome of patients in order to find appropriate markers for malignancies (AU)


Asunto(s)
Humanos , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Esofágicas/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
9.
Pathol Res Pract ; 254: 155101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211387

RESUMEN

FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is a long non-coding RNA being transcribed from a locus on chromosome 1p33. This transcript has been found to be up-regulated in tumor samples of almost all types of malignancies in association with a significant increase in malignant features. FOXD2-AS1 can affect activity of PI3K/AKT, AKT/mTOR, Hippo/YAP, Notch, NRf2, Wnt/ß-catenin, NF-ƙB and ERK/MAPK pathways. Furthermore, it can enhance stem cell properties in cancer cells and prompt epithelial-mesenchymal transition. It is also involved in induction of resistance to a variety of anticancer agents such as adriamycin, cisplatin, 5-fluorouracil, temozolomide and gemcitabine. This article summarizes the impact of FOXD2-AS1 in diverse human disorders.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Cisplatino , Gemcitabina , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
J Cell Mol Med ; 28(2): e18052, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041559

RESUMEN

Fibrosis refers to excessive build-up of scar tissue and extracellular matrix components in different organs. In recent years, it has been revealed that different cytokines and chemokines, especially Transforming growth factor beta (TGF-ß) is involved in the pathogenesis of fibrosis. It has been shown that TGF-ß is upregulated in fibrotic tissues, and contributes to fibrosis by mediating pathways that are related to matrix preservation and fibroblasts differentiation. There is no doubt that antioxidants protect against different inflammatory conditions by reversing the effects of nitrogen, oxygen and sulfur-based reactive elements. Oxidative stress has a direct impact on chronic inflammation, and as results, prolonged inflammation ultimately results in fibrosis. Different types of antioxidants, in the forms of vitamins, natural compounds or synthetic ones, have been proven to be beneficial in the protection against fibrotic conditions both in vitro and in vivo. In this study, we reviewed the role of different compounds with antioxidant activity in induction or inhibition of TGF-ß/SMAD signalling pathway, with regard to different fibrotic conditions such as gastro-intestinal fibrosis, cardiac fibrosis, pulmonary fibrosis, skin fibrosis, renal fibrosis and also some rare cases of fibrosis, both in animal models and cell lines.


Asunto(s)
Fibrosis Pulmonar , Factor de Crecimiento Transformador beta , Animales , Factor de Crecimiento Transformador beta/metabolismo , Antioxidantes/farmacología , Fibrosis , Inflamación , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
11.
Clin Transl Oncol ; 26(1): 16-38, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37178445

RESUMEN

Recent studies have revealed the impact of microRNAs (miRNAs) in the carcinogenic process. miR-424 is a miRNA whose role in this process is being to be identified. Experiments in the ovarian cancer, cervical cancer, hepatocellular carcinoma, neuroblastoma, breast cancer, osteosarcoma, intrahepatic cholangiocarcinoma, prostate cancer, endometrial cancer, non-small cell lung cancer, hemangioma and gastric cancer have reported down-regulation of miR-424. On the other hand, this miRNA has been found to be up-regulated in melanoma, laryngeal and esophageal squamous cell carcinomas, glioma, multiple myeloma and thyroid cancer. Expression of this miRNA is regulated by methylation status of its promoter. Besides, LINC00641, CCAT2, PVT1, LIN00657, LINC00511 and NNT-AS1 are among lncRNAs that act as molecular sponges for miR-424, thus regulating its expression. Moreover, several members of SNHG family of lncRNAs have been found to regulate expression of miR-424. This miRNA is also involved in the regulation of E2F transcription factors. The current review aims at summarization of the role of miR-424 in the process of cancer evolution and its impact on clinical outcome of patients in order to find appropriate markers for malignancies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Esofágicas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Masculino , Femenino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , ARN Largo no Codificante/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , MicroARNs/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Línea Celular Tumoral
12.
Pathol Res Pract ; 251: 154896, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37852016

RESUMEN

MicroRNA-328 (miR-328) is an RNA gene that is primarily associated with lung cancer, and its encoding gene is located on 16q22.1. Expression of miR-328 has been observed in lung and esophagus tissues based on RNAseq data. Although several studies have aimed at the detection of miR-328 levels in tumor tissues, there is an obvious discrepancy between the results of these studies. Even in a certain type of cancer, some studies have reported up-regulation of miR-328 in cancerous tissues versus control tissues, while others have reported its down-regulation. This discrepancy might be attributed to different stages/grades of tumor tissues or other clinical characteristics. This review article focuses on the available literature to explore the functions of miR-328 in the development of human carcinogenesis.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pulmonares/patología , Regulación hacia Arriba , Regulación hacia Abajo , Carcinogénesis/genética , Carcinogénesis/patología , Regulación Neoplásica de la Expresión Génica/genética , Línea Celular Tumoral , Proliferación Celular/genética
13.
Pathol Res Pract ; 251: 154897, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37862921

RESUMEN

Small nucleolar RNA host gene 12 (SNHG12) is a long non-coding RNA (lncRNA) that contributes in a variety of human pathologies. This lncRNAs acts as molecular sponge for various miRNAs, namely miR-200c-5p, miR-129-5p, miR-30a-3p, miR-195, miR-133b, miR-199a/b-5p, miR-320b, miR-16, miR-15a, miR-218-5p, miR-320 and a number of other miRNAs. Through this mechanism, SNHG12 can affect activity of HIF-1α, Wnt/ß-catenin, VEGF, PI3K/AKT/mTOR, PTEN, NF-κB and ERK-1/2 signaling. SNHG12 can affect pathogenesis of several disorders, including those arising from genitourinary, gastrointestinal, pulmonary, central nervous and cardiovascular systems. These effects have been best characterized in the context of cancer where it can be used as a possible diagnostic and prognostic marker. In order to summarize the role of this lncRNA in human disorders, particularly cancer and highlight its potential application in biomedical studies, we designed the current review. We also emphasized on its diagnostic and prognostic roles.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/genética , Fosfatidilinositol 3-Quinasas , ARN Largo no Codificante/genética
14.
Noncoding RNA Res ; 8(4): 645-660, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37818447

RESUMEN

Brain metastases in breast cancer (BC) patients are often associated with a poor prognosis. Recent studies have uncovered the critical roles of miRNAs in the initiation and progression of BC brain metastasis, highlighting the disease's underlying molecular pathways. miRNA-181c, miRNA-10b, and miRNA-21, for example, are all overexpressed in BC patients. It has been shown that these three miRNAs help tumors grow and metastasize by targeting genes that control how cells work. On the other hand, miRNA-26b5p, miRNA-7, and miRNA-1013p are all downregulated in BC brain metastasis patients. They act as tumor suppressors by controlling the expression of genes related to cell adhesion, angiogenesis, and invasion. Therapeutic miRNA targeting has considerable promise in treating BC brain metastases. Several strategies have been proposed to modulate miRNA expression, including miRNA-Mimics, antagomirs, and small molecule inhibitors of miRNA biogenesis. This review discusses the aberrant expression of miRNAs and metastatic pathways that lead to the spread of BC cells to the brain. It also explores miRNA therapeutic target molecular mechanisms and BC brain metastasis challenges with advanced strategies. The targeting of certain miRNAs opens a new door for the development of novel therapeutic approaches for this devastating disease.

15.
Mol Cell Probes ; 72: 101929, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37683829

RESUMEN

Lung cancer (LC) is the primary reason for cancer-associated fatalities globally. Due to both tumor-suppressing and tumor-promoting activities, the TGF-ß family of growth factors is extremely essential to tumorigenesis. A non-coding single-stranded short RNA called microRNA (miRNA), which is made up of about 22 nt and is encoded by endogenous genes, can control normal and pathological pathways in various kinds of cancer, including LC. Recent research demonstrated that the TGF-ß signaling directly can affect the synthesis of miRNAs through suppressor of mothers against decapentaplegic (SMAD)-dependent activity or other unidentified pathways, which could generate allostatic feedback as a result of TGF-ß signaling stimulation and ultimately affect the destiny of cancer tissues. In this review, we emphasize the critical functions of miRNAs in lung cancer progression and, more critically, how they affect the TGF-ß signaling pathway, and explore the role of both the TGF-ß signaling pathway and miRNAs as potential therapeutic targets for improving the treatments of LC patients.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pulmonares/patología , Pulmón/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/genética
16.
Noncoding RNA Res ; 8(4): 615-632, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37767111

RESUMEN

Colorectal cancer (CRC) is ranked as the world's third-most prevalent cancer, and metastatic CRC considerably increases cancer-related fatalities globally. A number of complex mechanisms that are strictly controlled at the molecular level are involved in metastasis, which is the primary reason for death in people with CRC. Recently, it has become clear that exosomes, which are small extracellular vesicles released by non-tumorous and tumorigenic cells, play a critical role as communication mediators among tumor microenvironment (TME). To facilitate communication between the TME and cancer cells, non-coding RNAs (ncRNAs) play a crucial role and are recognized as potent regulators of gene expression and cellular processes, such as metastasis and drug resistance. NcRNAs are now recognized as potent regulators of gene expression and many hallmarks of cancer, including metastasis. Exosomal ncRNAs, like miRNAs, circRNAs, and lncRNAs, have been demonstrated to influence a number of cellular mechanisms that contribute to CRC metastasis. However, the molecular mechanisms that link exosomal ncRNAs with CRC metastasis are not well understood. This review highlights the essential roles that exosomal ncRNAs play in the progression of CRC metastatic disease and explores the therapeutic choices that are open to patients who have CRC metastases. However, exosomal ncRNA treatment strategy development is still in its early phases; consequently, additional investigation is required to improve delivery methods and find novel therapeutic targets as well as confirm the effectiveness and safety of these therapies in preclinical and clinical contexts.

17.
Cytokine ; 170: 156351, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37657235

RESUMEN

The cytokine known as transforming growth factor (TGF) is essential for cell development, differentiation, and apoptosis in BC. TGF-ß dysregulation can either promote or inhibit tumor development, and it is a key signaling pathway in BC spread. A recently identified family of ncRNAs known as lncRNAs has received a great deal of effort and is an important regulator of many cellular processes, including transcription of genes, chromatin remodeling, progression of the cell cycle, and posttranscriptional processing. Furthermore, both TGF-ß signaling and lncRNAs serve as important early-stage biomarkers for BC diagnosis and prognosis and also play a significant role in BC drug resistance. According to recent studies, lncRNAs can regulate TGF-ß by modulating its cofactors in BC. However, the particular functions of lncRNAs and the TGF-ß pathway in controlling BC progression are not well understood yet. This review explores the lncRNAs' functional properties in BC as tumor suppressors or oncogenes in the regulation of genes, with a focus on dysregulated TGF-ß signaling. Further, we emphasize the functional roles of lncRNAs and TGF-ß pathway in the progression of BC to discover new treatment strategies and better comprehend the fundamental cellular pathways.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Factor de Crecimiento Transformador beta/genética , ARN Largo no Codificante/genética , Transducción de Señal/genética , Diferenciación Celular , Citocinas
18.
Front Cell Dev Biol ; 11: 1131199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37427385

RESUMEN

The long non-coding RNA (lncRNA) cancer susceptibility 11 (CASC11) is a newly identified lncRNA located on chromosome 8q24.21. The expression of lncRNA CASC11 has been found to be elevated in different cancer types and the prognosis of the tumor is inversely correlated with the high CASC11 expression. Moreover, lncRNA CASC11 has an oncogenic function in cancers. The biological characteristics of the tumors, such as proliferation, migration, invasion, autophagy, and apoptosis can be controlled by this lncRNA. In addition to interacting with miRNAs, proteins, transcription factors, and other molecules, the lncRNA CASC11 modulates signaling pathways including Wnt/ß-catenin and epithelial-mesenchymal transition. In this review, we have summarized studies on the role of lncRNA CASC11 in the carcinogenesis from cell lines, in vivo, and clinical perspectives.

19.
Mil Med Res ; 10(1): 32, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460924

RESUMEN

Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-editing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Neoplasias/genética , Neoplasias/terapia
20.
Pathol Res Pract ; 248: 154668, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37418994

RESUMEN

Non-functioning pituitary adenomas (NFPAs) are a group of pituitary tumors lacking manifestations linked to high hormone production, such as acromegaly and Cushing's syndrome. NFPA carcinogenesis depends on several molecular players. Long non-coding RNAs (lncRNAs) are a class of molecular players whose role in tumorigenesis has just recently been recognized. In the current study, we appraised expressions of 5 lncRNAs, namely FGD5-AS1, ATP6V0E2-AS1, ARHGAP5-AS1, WWC2-AS2 and EPB41L4A-AS1 in NFPAs versus their corresponding non-tumoral samples. Expressions of ATP6V0E2-AS1, EPB41L4A-AS1, FGD5-AS1 and WWC2-AS2 were significantly increased in NFPA samples compared with adjacent non-tumoral samples (P values = 0.037, 0.007, 0.008 and 0.03, respectively). However, expression of ARHGAP5-AS1 was not different between NFPA samples and controls (P value = 0.62). EPB41L4A-AS1 and FGD5-AS1 could discriminate between NFPA samples and adjacent non-tumoral samples (P values = 0.03 and 0.04, respectively). However, the AUC values were not appropriate. There was a significant positive association between age of NFPA patients and invasiveness of NFPA (χ2 = 4.24, P value = 0.039). Moreover, there was a significant positive association between diseases duration and CSF leak (χ2 = 11.4, p value = 0.023). Finally, there was a significant positive association between tumor size and Knosp classification (χ2 = 11.5, p value = 0.02) and invasiveness of NFPA (χ2 = 6.12, p value = 0.04). The current study provides information about dysregulation of lncRNAs in NFPAs and warrants additional studies in this field.


Asunto(s)
Adenoma , Neoplasias Hipofisarias , ARN Largo no Codificante , Humanos , Neoplasias Hipofisarias/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Adenoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA