Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 18(5): 954-967, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723094

RESUMEN

Cytotoxic protein aggregation-induced impairment of cell function and homeostasis are hallmarks of age-related neurodegenerative pathologies. As proteasomal degradation represents the major clearance pathway for oxidatively damaged proteins, a detailed understanding of the molecular events underlying its stress response is critical for developing strategies to maintain cell viability and function. Although the 26S proteasome has been shown to disassemble during oxidative stress, its conformational dynamics remains unclear. To this end, we have developed a new quantitative cross-linking mass spectrometry (QXL-MS) workflow to explore the structural dynamics of proteasome complexes in response to oxidative stress. This strategy comprises SILAC-based metabolic labeling, HB tag-based affinity purification, a 2-step cross-linking reaction consisting of mild in vivo formaldehyde and on-bead DSSO cross-linking, and multi-stage tandem mass spectrometry (MSn) to identify and quantify cross-links. This integrated workflow has been successfully applied to explore the molecular events underlying oxidative stress-dependent proteasomal regulation by comparative analyses of proteasome complex topologies from treated and untreated cells. Our results show that H2O2 treatment weakens the 19S-20S interaction within the 26S proteasome, along with reorganizations within the 19S and 20S subcomplexes. Altogether, this work sheds light on the mechanistic response of the 26S to acute oxidative stress, suggesting an intermediate proteasomal state(s) before H2O2-mediated dissociation of the 26S. The QXL-MS strategy presented here can be applied to study conformational changes of other protein complexes under different physiological conditions.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Peróxido de Hidrógeno/toxicidad , Espectrometría de Masas/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Reproducibilidad de los Resultados
2.
Anal Chem ; 90(12): 7600-7607, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29792801

RESUMEN

Cross-linking mass spectrometry (XL-MS) has become an emerging technology for defining protein-protein interactions (PPIs) and elucidating architectures of large protein complexes. Up to now, the most widely used cross-linking reagents target lysines. Although such reagents have been successfully applied to map PPIs at the proteome-wide scale, comprehensive PPI profiling would require additional cross-linking chemistries. Cysteine is one of the most reactive amino acids and an attractive target for cross-linking owing to its unique role in protein structures. Although sulfhydryl-reactive cross-linkers are commercially available, their applications in XL-MS studies remain sparse, likely due to the difficulty in identifying cysteine cross-linked peptides. Previously, we developed a new class of sulfoxide-containing MS-cleavable cross-linkers to enable fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MS n). Here, we present the development of a new sulfoxide-containing MS-cleavable homobifunctional cysteine-reactive cross-linker, bismaleimide sulfoxide (BMSO). We demonstrate that BMSO-cross-linked peptides display the same characteristic fragmentation pattern during collision-induced dissociation (CID) as other sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MS n. Additionally, we show that BMSO can complement amine- and acidic-residue-reactive reagents for mapping protein-interaction regions. Collectively, this work not only enlarges the toolbox of MS-cleavable cross-linkers with diverse chemistries, but more importantly expands our capacity and capability of studying PPIs in general.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Cisteína/química , Mapeo de Interacción de Proteínas , Albúmina Sérica Bovina/química , Sulfóxidos/química , Animales , Bovinos , Estructura Molecular , Unión Proteica , Sulfóxidos/síntesis química , Espectrometría de Masas en Tándem
3.
J Biol Chem ; 292(39): 16310-16320, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28821611

RESUMEN

Oxidative stress has been implicated in multiple human neurological and other disorders. Proteasomes are multi-subunit proteases critical for the removal of oxidatively damaged proteins. To understand stress-associated human pathologies, it is important to uncover the molecular events underlying the regulation of proteasomes upon oxidative stress. To this end, we investigated H2O2 stress-induced molecular changes of the human 26S proteasome and determined that stress-induced 26S proteasome disassembly is conserved from yeast to human. Moreover, we developed and employed a new proteomic approach, XAP (in vivo cross-linking-assisted affinity purification), coupled with stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative MS, to capture and quantify several weakly bound proteasome-interacting proteins and examine their roles in stress-mediated proteasomal remodeling. Our results indicate that the adapter protein Ecm29 is the main proteasome-interacting protein responsible for stress-triggered remodeling of the 26S proteasome in human cells. Importantly, using a disuccinimidyl sulfoxide-based cross-linking MS platform, we mapped the interactions of Ecm29 within itself and with proteasome subunits and determined the architecture of the Ecm29-proteasome complex with integrative structure modeling. These results enabled us to propose a structural model in which Ecm29 intrudes on the interaction between the 20S core particle and the 19S regulatory particle in the 26S proteasome, disrupting the proteasome structure in response to oxidative stress.


Asunto(s)
Modelos Moleculares , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Marcadores de Afinidad , Reactivos de Enlaces Cruzados/farmacología , Células HEK293 , Humanos , Marcaje Isotópico , Proteínas con Dominio LIM/química , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteolisis , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masas en Tándem , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitinas/química , Ubiquitinas/genética , Ubiquitinas/metabolismo
4.
Mol Cell Proteomics ; 16(5): 840-854, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28292943

RESUMEN

The 26S proteasome is the macromolecular machine responsible for ATP/ubiquitin dependent degradation. As aberration in proteasomal degradation has been implicated in many human diseases, structural analysis of the human 26S proteasome complex is essential to advance our understanding of its action and regulation mechanisms. In recent years, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for elucidating structural topologies of large protein assemblies, with its unique capability of studying protein complexes in cells. To facilitate the identification of cross-linked peptides, we have previously developed a robust amine reactive sulfoxide-containing MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). To better understand the structure and regulation of the human 26S proteasome, we have established new DSSO-based in vivo and in vitro XL-MS workflows by coupling with HB-tag based affinity purification to comprehensively examine protein-protein interactions within the 26S proteasome. In total, we have identified 447 unique lysine-to-lysine linkages delineating 67 interprotein and 26 intraprotein interactions, representing the largest cross-link dataset for proteasome complexes. In combination with EM maps and computational modeling, the architecture of the 26S proteasome was determined to infer its structural dynamics. In particular, three proteasome subunits Rpn1, Rpn6, and Rpt6 displayed multiple conformations that have not been previously reported. Additionally, cross-links between proteasome subunits and 15 proteasome interacting proteins including 9 known and 6 novel ones have been determined to demonstrate their physical interactions at the amino acid level. Our results have provided new insights on the dynamics of the 26S human proteasome and the methodologies presented here can be applied to study other protein complexes.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular , Humanos , Modelos Moleculares , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
5.
Anal Chem ; 88(20): 10301-10308, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27626298

RESUMEN

Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Proteínas/química , Espectrometría de Masas en Tándem , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Citocromos c/química , Citocromos c/metabolismo , Marcaje Isotópico , Péptidos/análisis , Dominios y Motivos de Interacción de Proteínas , Proteínas/metabolismo , Sulfóxidos/química
6.
Anal Chem ; 88(16): 8315-22, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27417384

RESUMEN

Cross-linking mass spectrometry (XL-MS) has become a powerful strategy for defining protein-protein interactions and elucidating architectures of large protein complexes. However, one of the inherent challenges in MS analysis of cross-linked peptides is their unambiguous identification. To facilitate this process, we have previously developed a series of amine-reactive sulfoxide-containing MS-cleavable cross-linkers. These MS-cleavable reagents have allowed us to establish a common robust XL-MS workflow that enables fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MS(n)). Although amine-reactive reagents targeting lysine residues have been successful, it remains difficult to characterize protein interaction interfaces with little or no lysine residues. To expand the coverage of protein interaction regions, we present here the development of a new acidic residue-targeting sulfoxide-containing MS-cleavable homobifunctional cross-linker, dihydrazide sulfoxide (DHSO). We demonstrate that DHSO cross-linked peptides display the same predictable and characteristic fragmentation pattern during collision induced dissociation as amine-reactive sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MS(n). Additionally, we show that DHSO can provide complementary data to amine-reactive reagents. Collectively, this work not only enlarges the range of the application of XL-MS approaches but also further demonstrates the robustness and applicability of sulfoxide-based MS-cleavability in conjunction with various cross-linking chemistries.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Péptidos/química , Safrol/análogos & derivados , Espectrometría de Masas en Tándem , Secuencia de Aminoácidos , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Caballos , Mioglobina/química , Mioglobina/metabolismo , Péptidos/síntesis química , Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Safrol/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA