Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Arch Pharm (Weinheim) ; : e2400486, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996352

RESUMEN

AlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11 AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the resulting compounds were tested in vitro against various HDAC isoforms. Compound 5a proved to be the most active compound with an IC50 of 365 nM and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a binding mode comparable to FT895 but could not adopt any reasonable poses in other HDAC isoforms. We further supported the docking results with molecular dynamics simulations that confirmed the predicted binding mode. 5a also showed promising activity with an EC50 of 3.6 µM on neuroblastoma cells.

2.
Nucleic Acids Res ; 52(7): 3971-3988, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38300787

RESUMEN

The RAVER1 protein serves as a co-factor in guiding the polypyrimidine tract-binding protein (PTBP)-dependent control of alternative splicing (AS). Whether RAVER1 solely acts in concert with PTBPs and how it affects cancer cell fate remained elusive. Here, we provide the first comprehensive investigation of RAVER1-controlled AS in cancer cell models. This reveals a pro-oncogenic role of RAVER1 in modulating tumor growth and epithelial-mesenchymal-transition (EMT). Splicing analyses and protein-association studies indicate that RAVER1 guides AS in association with other splicing regulators, including PTBPs and SRSFs. In cancer cells, one major function of RAVER1 is the stimulation of proliferation and restriction of apoptosis. This involves the modulation of AS events within the miR/RISC pathway. Disturbance of RAVER1 impairs miR/RISC activity resulting in severely deregulated gene expression, which promotes lethal TGFB-driven EMT. Among others, RAVER1-modulated splicing events affect the insertion of protein interaction modules in factors guiding miR/RISC-dependent gene silencing. Most prominently, in all three human TNRC6 proteins, RAVER1 controls AS of GW-enriched motifs, which are essential for AGO2-binding and the formation of active miR/RISC complexes. We propose, that RAVER1 is a key modulator of AS events in the miR/RISC pathway ensuring proper abundance and composition of miR/RISC effectors. This ensures balanced expression of TGFB signaling effectors and limits TGFB induced lethal EMT.


Asunto(s)
Empalme Alternativo , Transición Epitelial-Mesenquimal , MicroARNs , Transición Epitelial-Mesenquimal/genética , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Línea Celular Tumoral , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Apoptosis/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales
3.
J Mol Cell Biol ; 16(1)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38253401

RESUMEN

Alternative splicing is one of the major cellular processes that determine the tissue-specific expression of protein variants. However, it remains challenging to identify physiologically relevant and tissue-selective proteins that are generated by alternative splicing. Hence, we investigated the target spectrum of the splicing factor Rbfox1 in the cardiac muscle context in more detail. By using a combination of in silico target prediction and in-cell validation, we identified several focal adhesion proteins as alternative splicing targets of Rbfox1. We focused on the alternative splicing patterns of vinculin (metavinculin isoform) and paxillin (extended paxillin isoform) and identified both as potential Rbfox1 targets. Minigene analyses suggested that both isoforms are promoted by Rbfox1 due to binding in the introns. Focal adhesions play an important role in the cardiac muscle context, since they mainly influence cell shape, cytoskeletal organization, and cell-matrix association. Our data confirmed that depletion of Rbfox1 changed cardiomyoblast morphology, cytoskeletal organization, and multinuclearity after differentiation, which might be due to changes in alternative splicing of focal adhesion proteins. Hence, our results indicate that Rbfox1 promotes alternative splicing of focal adhesion genes in cardiac muscle cells, which might contribute to heart disease progression, where downregulation of Rbfox1 is frequently observed.


Asunto(s)
Empalme Alternativo , Adhesiones Focales , Miocitos Cardíacos , Paxillin , Factores de Empalme de ARN , Empalme Alternativo/genética , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética , Adhesiones Focales/metabolismo , Adhesiones Focales/genética , Animales , Paxillin/metabolismo , Paxillin/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Ratones , Vinculina/metabolismo , Vinculina/genética , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
4.
Viruses ; 15(7)2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37515119

RESUMEN

The oncofetal RNA-binding protein IGF2BP1 has been reported to be a driver of tumor progression in a multitude of cancer entities. Its main function is the stabilization of target transcripts by shielding these from miRNA-mediated degradation. However, there is growing evidence that several virus species recruit IGF2BP1 to promote their propagation. In particular, tumor-promoting viruses, such as hepatitis B/C and human papillomaviruses, benefit from IGF2BP1. Moreover, recent evidence suggests that non-oncogenic viruses, such as SARS-CoV-2, also take advantage of IGF2BP1. The only virus inhibited by IGF2BP1 reported to date is HIV-1. This review summarizes the current knowledge about the interactions between IGF2BP1 and different virus species. It further recapitulates several findings by presenting analyses from publicly available high-throughput datasets.


Asunto(s)
COVID-19 , Proteínas Portadoras , Humanos , Línea Celular Tumoral , Retroviridae/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/metabolismo
5.
Mol Cancer ; 22(1): 88, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37246217

RESUMEN

BACKGROUND: Neuroblastoma is the most common solid tumor in infants accounting for approximately 15% of all cancer-related deaths. Over 50% of high-risk neuroblastoma relapse, emphasizing the need of novel drug targets and therapeutic strategies. In neuroblastoma, chromosomal gains at chromosome 17q, including IGF2BP1, and MYCN amplification at chromosome 2p are associated with adverse outcome. Recent, pre-clinical evidence indicates the feasibility of direct and indirect targeting of IGF2BP1 and MYCN in cancer treatment. METHODS: Candidate oncogenes on 17q were identified by profiling the transcriptomic/genomic landscape of 100 human neuroblastoma samples and public gene essentiality data. Molecular mechanisms and gene expression profiles underlying the oncogenic and therapeutic target potential of the 17q oncogene IGF2BP1 and its cross-talk with MYCN were characterized and validated in human neuroblastoma cells, xenografts and PDX as well as novel IGF2BP1/MYCN transgene mouse models. RESULTS: We reveal a novel, druggable feedforward loop of IGF2BP1 (17q) and MYCN (2p) in high-risk neuroblastoma. This promotes 2p/17q chromosomal gains and unleashes an oncogene storm resulting in fostered expression of 17q oncogenes like BIRC5 (survivin). Conditional, sympatho-adrenal transgene expression of IGF2BP1 induces neuroblastoma at a 100% incidence. IGF2BP1-driven malignancies are reminiscent to human high-risk neuroblastoma, including 2p/17q-syntenic chromosomal gains and upregulation of Mycn, Birc5, as well as key neuroblastoma circuit factors like Phox2b. Co-expression of IGF2BP1/MYCN reduces disease latency and survival probability by fostering oncogene expression. Combined inhibition of IGF2BP1 by BTYNB, MYCN by BRD inhibitors or BIRC5 by YM-155 is beneficial in vitro and, for BTYNB, also. CONCLUSION: We reveal a novel, druggable neuroblastoma oncogene circuit settling on strong, transcriptional/post-transcriptional synergy of MYCN and IGF2BP1. MYCN/IGF2BP1 feedforward regulation promotes an oncogene storm harboring high therapeutic potential for combined, targeted inhibition of IGF2BP1, MYCN expression and MYCN/IGF2BP1-effectors like BIRC5.


Asunto(s)
Neuroblastoma , Animales , Humanos , Lactante , Ratones , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes myc , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Recurrencia Local de Neoplasia/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo
6.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37173993

RESUMEN

T-prolymphocytic leukemia (T-PLL) is a rare and mature T-cell malignancy with characteristic chemotherapy-refractory behavior and a poor prognosis. Molecular concepts of disease development have been restricted to protein-coding genes. Recent global microRNA (miR) expression profiles revealed miR-141-3p and miR-200c-3p (miR-141/200c) as two of the highest differentially expressed miRs in T-PLL cells versus healthy donor-derived T cells. Furthermore, miR-141/200c expression separates T-PLL cases into two subgroups with high and low expression, respectively. Evaluating the potential pro-oncogenic function of miR-141/200c deregulation, we discovered accelerated proliferation and reduced stress-induced cell death induction upon stable miR-141/200c overexpression in mature T-cell leukemia/lymphoma lines. We further characterized a miR-141/200c-specific transcriptome involving the altered expression of genes associated with enhanced cell cycle transition, impaired DNA damage responses, and augmented survival signaling pathways. Among those genes, we identified STAT4 as a potential miR-141/200c target. Low STAT4 expression (in the absence of miR-141/200c upregulation) was associated with an immature phenotype of primary T-PLL cells as well as with a shortened overall survival of T-PLL patients. Overall, we demonstrate an aberrant miR-141/200c-STAT4 axis, showing for the first time the potential pathogenetic implications of a miR cluster, as well as of STAT4, in the leukemogenesis of this orphan disease.

7.
Drug Discov Today ; 28(6): 103580, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37031812

RESUMEN

RNA-binding proteins (RBPs) are crucial players in tumorigenesis and, hence, promising targets in cancer drug discovery. However, they are largely regarded as 'undruggable', because of the often noncatalytic and complex interactions between protein and RNA, which limit the discovery of specific inhibitors. Nonetheless, over the past 10 years, drug discovery efforts have uncovered RBP inhibitors with clinical relevance, highlighting the disruption of RNA-protein networks as a promising avenue for cancer therapeutics. In this review, we discuss the role of structurally distinct RBPs in cancer, and the mechanisms of RBP-directed small-molecule inhibitors (SMOIs) focusing on drug-protein interactions, binding surfaces, potency, and translational potential. Additionally, we underline the limitations of RBP-targeting drug discovery assays and comment on future trends in the field.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteínas de Unión al ARN/metabolismo , Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , ARN/genética , Descubrimiento de Drogas
8.
PLoS One ; 18(3): e0282593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36867608

RESUMEN

We show the effects of the three purine derivatives, caffeine, theophylline, and istradefylline, on cAMP production by adenylyl cyclase 5 (ADCY5)-overexpressing cell lines. A comparison of cAMP levels was performed for ADCY5 wild-type and R418W mutant cells. ADCY5-catalyzed cAMP production was reduced with all three purine derivatives, while the most pronounced effects on cAMP reduction were observed for ADCY5 R418W mutant cells. The gain-of-function ADCY5 R418W mutant is characterized by an increased catalytic activity resulting in elevated cAMP levels that cause kinetic disorders or dyskinesia in patients. Based on our findings in ADCY5 cells, a slow-release formulation of theophylline was administered to a preschool-aged patient with ADCY5-related dyskinesia. A striking improvement of symptoms was observed, outperforming the effects of caffeine that had previously been administered to the same patient. We suggest considering theophylline as an alternative therapeutic option to treat ADCY5-related dyskinesia in patients.


Asunto(s)
Discinesias , Teofilina , Humanos , Preescolar , Cafeína , Inhibidores de Fosfodiesterasa , Broncodilatadores , Diuréticos , Vasodilatadores , Agitación Psicomotora
10.
Blood ; 141(12): 1425-1441, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36179280

RESUMEN

Upregulation of the proto-oncogene T-cell leukemia/lymphoma 1A (TCL1A) is causally implicated in various B-cell and T-cell malignancies. High-level TCL1A correlates with aggressive disease features and inferior clinical outcomes. However, the molecular and cell biological consequences of, particularly nuclear, TCL1A are not fully elucidated. We observed here in mouse models of subcellular site-specific TCL1A-induced lymphomagenesis that TCL1A exerts a strong transforming impact via nuclear topography. In proteomic screens of TCL1A-bound molecules in chronic lymphocytic leukemia (CLL) cells and B-cell lymphoma lines, we identified regulators of cell cycle and DNA repair pathways as novel TCL1A interactors, particularly enriched under induced DNA damage and mitosis. By functional mapping and in silico modeling, we specifically identified the mitotic checkpoint protein, cell division cycle 20 (CDC20), as a direct TCL1A interactor. According to the regulatory impact of TCL1A on the activity of the CDC20-containing mitotic checkpoint and anaphase-promoting complexes during mitotic progression, TCL1A overexpression accelerated cell cycle transition in B-cell lymphoma lines, impaired apoptotic damage responses in association with pronounced chromosome missegregation, and caused cellular aneuploidy in Eµ-TCL1A mice. Among hematopoietic cancers, CDC20 levels seem particularly low in CLL. CDC20 expression negatively correlated with TCL1A and lower expression marked more aggressive and genomically instable disease and cellular phenotypes. Knockdown of Cdc20 in TCL1A-initiated murine CLL promoted aneuploidy and leukemic acceleration. Taken together, we discovered a novel cell cycle-associated effect of TCL1A abrogating controlled cell cycle transition. This adds to our concept of oncogenic TCL1A by targeting genome stability. Overall, we propose that TCL1A acts as a pleiotropic adapter molecule with a synergistic net effect of multiple hijacked pathways.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteómica , Linfoma de Células B/genética , Ciclo Celular/genética , Proto-Oncogenes , Proteínas de Ciclo Celular/genética , Mitosis
11.
Blood ; 141(10): 1105-1118, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36493345

RESUMEN

Gain of chromosome 21 (Hsa21) is among the most frequent aneuploidies in leukemia. However, it remains unclear how partial or complete amplifications of Hsa21 promote leukemogenesis and why children with Down syndrome (DS) (ie, trisomy 21) are particularly at risk of leukemia development. Here, we propose that RUNX1 isoform disequilibrium with RUNX1A bias is key to DS-associated myeloid leukemia (ML-DS). Starting with Hsa21-focused CRISPR-CRISPR-associated protein 9 screens, we uncovered a strong and specific RUNX1 dependency in ML-DS cells. Expression of the RUNX1A isoform is elevated in patients with ML-DS, and mechanistic studies using murine ML-DS models and patient-derived xenografts revealed that excess RUNX1A synergizes with the pathognomonic Gata1s mutation during leukemogenesis by displacing RUNX1C from its endogenous binding sites and inducing oncogenic programs in complex with the MYC cofactor MAX. These effects were reversed by restoring the RUNX1A:RUNX1C equilibrium in patient-derived xenografts in vitro and in vivo. Moreover, pharmacological interference with MYC:MAX dimerization using MYCi361 exerted strong antileukemic effects. Thus, our study highlights the importance of alternative splicing in leukemogenesis, even on a background of aneuploidy, and paves the way for the development of specific and targeted therapies for ML-DS, as well as for other leukemias with Hsa21 aneuploidy or RUNX1 isoform disequilibrium.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Síndrome de Down , Leucemia Mieloide , Animales , Niño , Humanos , Ratones , Aneuploidia , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Síndrome de Down/complicaciones , Síndrome de Down/genética , Leucemia Mieloide/genética , Isoformas de Proteínas/genética , Trisomía/genética
12.
Nucleic Acids Res ; 50(14): 8207-8225, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35848924

RESUMEN

RNA-binding proteins (RBPs) have been relatively overlooked in cancer research despite their contribution to virtually every cancer hallmark. Here, we use RNA interactome capture (RIC) to characterize the melanoma RBPome and uncover novel RBPs involved in melanoma progression. Comparison of RIC profiles of a non-tumoral versus a metastatic cell line revealed prevalent changes in RNA-binding capacities that were not associated with changes in RBP levels. Extensive functional validation of a selected group of 24 RBPs using five different in vitro assays unveiled unanticipated roles of RBPs in melanoma malignancy. As proof-of-principle we focused on PDIA6, an ER-lumen chaperone that displayed a novel RNA-binding activity. We show that PDIA6 is involved in metastatic progression, map its RNA-binding domain, and find that RNA binding is required for PDIA6 tumorigenic properties. These results exemplify how RIC technologies can be harnessed to uncover novel vulnerabilities of cancer cells.


Asunto(s)
Melanoma , Metástasis de la Neoplasia , Proteína Disulfuro Isomerasas , Proteínas de Unión al ARN , Línea Celular Tumoral , Retículo Endoplásmico , Humanos , Melanoma/genética , Melanoma/patología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Metástasis de la Neoplasia/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
13.
Cancers (Basel) ; 14(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35565249

RESUMEN

Neuroendocrine neoplasms (NENs) represent a heterogenous class of highly vascularized neoplasms that are increasing in prevalence and are predominantly diagnosed at a metastatic state. The molecular mechanisms leading to tumor initiation, metastasis, and chemoresistance are still under investigation. Hence, identification of novel therapeutic targets is of great interest. Here, we demonstrate that the RNA-binding Protein IGF2BP1 is a post-transcriptional regulator of components of the Polycomb repressive complex 2 (PRC2), an epigenic modifier affecting transcriptional regulation and proliferation: Comprehensive in silico analyses along with in vitro experiments showed that IGF2BP1 promotes neuroendocrine tumor cell proliferation by stabilizing the mRNA of Enhancer of Zeste 2 (EZH2), the catalytic subunit of PRC2, which represses gene expression by tri-methylation of histone H3 at lysine 27 (H3K27me3). The IGF2BP1-driven stabilization and protection of EZH2 mRNA is m6A-dependent and enhances EZH2 protein levels which stimulates cell cycle progression by silencing cell cycle arrest genes through enhanced H3K27 tri-methylation. Therapeutic inhibition of IGF2BP1 destabilizes EZH2 mRNA and results in a reduced cell proliferation, paralleled by an increase in G1 and sub-G1 phases. Combined targeting of IGF2BP1, EZH2, and Myc, a transcriptional activator of EZH2 and well-known target of IGF2BP1 cooperatively induces tumor cell apoptosis. Our data identify IGF2BP1 as an important driver of tumor progression in NEN, and indicate that disruption of the IGF2BP1-Myc-EZH2 axis represents a promising approach for targeted therapy of neuroendocrine neoplasms.

14.
Nat Commun ; 13(1): 2727, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585045

RESUMEN

The biological role of RNA-binding proteins in the secretory pathway is not well established. Here, we describe that human HDLBP/Vigilin directly interacts with more than 80% of ER-localized mRNAs. PAR-CLIP analysis reveals that these transcripts represent high affinity HDLBP substrates and are specifically bound in their coding sequences (CDS), in contrast to CDS/3'UTR-bound cytosolic mRNAs. HDLBP crosslinks strongly to long CU-rich motifs, which frequently reside in CDS of ER-localized mRNAs and result in high affinity multivalent interactions. In addition to HDLBP-ncRNA interactome, quantification of HDLBP-proximal proteome confirms association with components of the translational apparatus and the signal recognition particle. Absence of HDLBP results in decreased translation efficiency of HDLBP target mRNAs, impaired protein synthesis and secretion in model cell lines, as well as decreased tumor growth in a lung cancer mouse model. These results highlight a general function for HDLBP in the translation of ER-localized mRNAs and its relevance for tumor progression.


Asunto(s)
Proteínas de la Membrana , ARN Mensajero , Proteínas de Unión al ARN , Regiones no Traducidas 3' , Animales , Línea Celular , Citosol/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
15.
Cancer Res ; 82(9): 1818-1831, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35259248

RESUMEN

T-cell prolymphocytic leukemia (T-PLL) is a chemotherapy-refractory T-cell malignancy with limited therapeutic options and a poor prognosis. Current disease concepts implicate TCL1A oncogene-mediated enhanced T-cell receptor (TCR) signaling and aberrant DNA repair as central perturbed pathways. We discovered that recurrent gains on chromosome 8q more frequently involve the argonaute RISC catalytic component 2 (AGO2) gene than the adjacent MYC locus as the affected minimally amplified genomic region. AGO2 has been understood as a protumorigenic key regulator of miRNA (miR) processing. Here, in primary tumor material and cell line models, AGO2 overrepresentation associated (i) with higher disease burden, (ii) with enhanced in vitro viability and growth of leukemic T cells, and (iii) with miR-omes and transcriptomes that highlight altered survival signaling, abrogated cell-cycle control, and defective DNA damage responses. However, AGO2 elicited also immediate, rather non-RNA-mediated, effects in leukemic T cells. Systems of genetically modulated AGO2 revealed that it enhances TCR signaling, particularly at the level of ZAP70, PLCγ1, and LAT kinase phosphoactivation. In global mass spectrometric analyses, AGO2 interacted with a unique set of partners in a TCR-stimulated context, including the TCR kinases LCK and ZAP70, forming membranous protein complexes. Models of their three-dimensional structure also suggested that AGO2 undergoes posttranscriptional modifications by ZAP70. This novel TCR-associated noncanonical function of AGO2 represents, in addition to TCL1A-mediated TCR signal augmentation, another enhancer mechanism of this important deregulated growth pathway in T-PLL. These findings further emphasize TCR signaling intermediates as candidates for therapeutic targeting. SIGNIFICANCE: The identification of AGO2-mediated activation of oncogenic T cells through signal amplifying protein-protein interactions advances the understanding of leukemogenic AGO2 functions and underlines the role of aberrant TCR signaling in T-PLL.


Asunto(s)
Leucemia Prolinfocítica de Células T , MicroARNs , Humanos , Leucemia Prolinfocítica de Células T/genética , Leucemia Prolinfocítica de Células T/patología , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/genética , Linfocitos T/metabolismo
16.
Haematologica ; 107(1): 187-200, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33543866

RESUMEN

T-cell prolymphocytic leukemia (T-PLL) is a poor-prognostic mature T-cell malignancy. It typically presents with exponentially rising lymphocyte counts, splenomegaly, and bone marrow infiltration. Effective treatment options are scarce and a better understanding of TPLL's pathogenesis is desirable. Activation of the TCL1 proto-oncogene and loss-of-function perturbations of the tumor suppressor ATM are TPLL's genomic hallmarks. The leukemic cell reveals a phenotype of active T-cell receptor (TCR) signaling and aberrant DNA damage responses. Regulatory networks based on the profile of microRNA (miR) have not been described for T-PLL. In a combined approach of small-RNA and transcriptome sequencing in 46 clinically and moleculary well-characterized T-PLL, we identified a global T-PLL-specific miR expression profile that involves 34 significantly deregulated miR species. This pattern strikingly resembled miR-ome signatures of TCR-activated T cells. By integrating these T-PLL miR profiles with transcriptome data, we uncovered regulatory networks associated with cell survival signaling and DNA damage response pathways. Despite a miR-ome that discerned leukemic from normal T cells, there were also robust subsets of T-PLL defined by a small set of specific miR. Most prominently, miR-141 and the miR- 200c-cluster separated cases into two major subgroups. Furthermore, increased expression of miR-223-3p as well as reduced expression of miR-21 and the miR-29 cluster were associated with more activated Tcell phenotypes and more aggressive disease presentations. Based on the implicated pathobiological role of these miR deregulations, targeting strategies around their effectors appear worth pursuing. We also established a combinatorial miR-based overall survival score for T-PLL (miROS-T-PLL), that might improve current clinical stratifications.


Asunto(s)
Leucemia Prolinfocítica de Células T , MicroARNs , Daño del ADN , Humanos , Leucemia Prolinfocítica de Células T/tratamiento farmacológico , Leucemia Prolinfocítica de Células T/genética , Leucemia Prolinfocítica de Células T/patología , Activación de Linfocitos , MicroARNs/genética , Linfocitos T
17.
Cancers (Basel) ; 13(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885022

RESUMEN

Anaplastic thyroid carcinoma (ATC) is the most fatal and rapidly evolving endocrine malignancy invading the head and neck region and accounts for up to 50% of thyroid cancer-associated deaths. Deregulation of the microRNA (miRNA) expression promotes thyroid carcinoma progression by modulating the reorganization of the ATC transcriptome. Here, we applied comparative miRNA-mRNA sequencing on a cohort of 28 thyroid carcinomas to unravel the association of deregulated miRNA and mRNA expression. This identified 85 miRNAs significantly deregulated in ATC. By establishing a new analysis pipeline, we unraveled 85 prime miRNA-mRNA interactions supporting the downregulation of candidate tumor suppressors and the upregulation of bona fide oncogenes such as survivin (BIRC5) in ATC. This miRNA-dependent reprogramming of the ATC transcriptome provided an mRNA signature comprising 65 genes sharply distinguishing ATC from other thyroid carcinomas. The validation of the deregulated protein expression in an independent thyroid carcinoma cohort demonstrates that miRNA-dependent oncogenes comprised in this signature, the transferrin receptor TFRC (CD71) and the E3-ubiquitin ligase DTL, are sharply upregulated in ATC. This upregulation is sufficient to distinguish ATC even from poorly differentiated thyroid carcinomas (PDTC). In sum, these findings provide new diagnostic tools and a robust resource to explore the key miRNA-mRNA regulation underlying the progression of thyroid carcinoma.

18.
Mol Cell ; 81(23): 4810-4825.e12, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774131

RESUMEN

Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.


Asunto(s)
Metiltransferasas/metabolismo , ARN Mitocondrial/química , ARN de Transferencia/química , Animales , Anticodón , Proliferación Celular , Codón , Citoplasma , ADN Mitocondrial/metabolismo , Transporte de Electrón , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales , Proteínas Mitocondriales/química , Consumo de Oxígeno , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Ribosomas/metabolismo , Regulación hacia Arriba
19.
Cells ; 10(6)2021 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204116

RESUMEN

Compared to pancreatic adenocarcinoma (PDAC), pancreatic neuroendocrine tumors (PanNET) represent a rare and heterogeneous tumor entity. In addition to surgical resection, several therapeutic approaches, including biotherapy, targeted therapy or chemotherapy are applicable. However, primary or secondary resistance to current therapies is still challenging. Recent genome-wide sequencing efforts in PanNET identified a large number of mutations in pathways involved in epigenetic modulation, including acetylation. Therefore, targeting epigenetic modulators in neuroendocrine cells could represent a new therapeutic avenue. Detailed information on functional effects and affected signaling pathways upon epigenetic targeting in PanNETs, however, is missing. The primary human PanNET cells NT-3 and NT-18 as well as the murine insulinoma cell lines beta-TC-6 (mouse) and RIN-T3 (rat) were treated with the non-selective histone-deacetylase (HDAC) inhibitor panobinostat (PB) and analyzed for functional effects and affected signaling pathways by performing Western blot, FACS and qPCR analyses. Additionally, NanoString analysis of more than 500 potentially affected targets was performed. In vivo immunohistochemistry (IHC) analyses on tumor samples from xenografts and the transgenic neuroendocrine Rip1Tag2-mouse model were investigated. PB dose dependently induced cell cycle arrest and apoptosis in neuroendocrine cells in human and murine species. HDAC inhibition stimulated redifferentiation of human primary PanNET cells by increasing mRNA-expression of somatostatin receptors (SSTRs) and insulin production. In addition to hyperacetylation of known targets, PB mediated pleitropic effects via targeting genes involved in the cell cycle and modulation of the JAK2/STAT3 axis. The HDAC subtypes are expressed ubiquitously in the existing cell models and in human samples of metastatic PanNET. Our results uncover epigenetic HDAC modulation using PB as a promising new therapeutic avenue in PanNET, linking cell-cycle modulation and pathways such as JAK2/STAT3 to epigenetic targeting. Based on our data demonstrating a significant impact of HDAC inhibition in clinical relevant in vitro models, further validation in vivo is warranted.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Proteínas de Neoplasias , Tumores Neuroectodérmicos , Neoplasias Pancreáticas , Panobinostat/farmacología , Animales , Línea Celular Tumoral , Humanos , Ratones , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Tumores Neuroectodérmicos/tratamiento farmacológico , Tumores Neuroectodérmicos/enzimología , Tumores Neuroectodérmicos/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Ratas
20.
Cancer Res ; 81(13): 3431-3440, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34228629

RESUMEN

RNA N6 -methyladenosine (m6A) modification occurs in approximately 25% of mRNAs at the transcriptome-wide level. RNA m6A is regulated by the RNA m6A methyltransferases methyltransferase-like 3 (METTL3), METTL14, and METTL16 (writers), demethylases FTO and ALKBH5 (erasers), and binding proteins YTHDC1-2, YTHDF1-3, IGF2BP1-3, and SND1 (readers). These RNA m6A modification proteins are frequently upregulated or downregulated in human cancer tissues and are often associated with poor patient prognosis. By modulating pre-mRNA splicing, mRNA nuclear export, decay, stability, and translation of oncogenic and tumor suppressive transcripts, RNA m6A modification proteins regulate cancer cell proliferation, survival, migration, invasion, tumor initiation, progression, metastasis, and sensitivity to anticancer therapies. Importantly, small-molecule activators of METTL3, as well as inhibitors of METTL3, FTO, ALKBH5, and IGF2BP1 have recently been identified and have shown considerable anticancer effects when administered alone or in combination with other anticancer agents, both in vitro and in mouse models of human cancers. Future compound screening and design of more potent and selective RNA m6A modification protein inhibitors and activators are expected to provide novel anticancer agents, appropriate for clinical trials in patients with cancer tissues harboring aberrant RNA m6A modification protein expression or RNA m6A modification protein-induced resistance to cancer therapy.


Asunto(s)
Adenosina/análogos & derivados , Resistencia a Antineoplásicos , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/patología , ARN/química , Adenosina/química , Animales , Desmetilación , Humanos , Metilación , Neoplasias/tratamiento farmacológico , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA