Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 8175, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289391

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that is a disease-modifying drug candidate for Parkinson's disease. CDNF has pleiotropic protective effects on stressed cells, but its mechanism of action remains incompletely understood. Here, we use state-of-the-art advanced structural techniques to resolve the structural basis of CDNF interaction with GRP78, the master regulator of the unfolded protein response (UPR) pathway. Subsequent binding studies confirm the obtained structural model of the complex, eventually revealing the interaction site of CDNF and GRP78. Finally, mutating the key residues of CDNF mediating its interaction with GRP78 not only results in impaired binding of CDNF but also abolishes the neuroprotective activity of CDNF-derived peptides in mesencephalic neuron cultures. These results suggest that the molecular interaction with GRP78 mediates the neuroprotective actions of CDNF and provide a structural basis for development of next generation CDNF-based therapeutic compounds against neurodegenerative diseases.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico , Respuesta de Proteína Desplegada , Chaperón BiP del Retículo Endoplásmico/metabolismo , Humanos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Animales , Unión Proteica , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Neuronas/metabolismo , Modelos Moleculares , Sitios de Unión
3.
Cell Chem Biol ; 31(3): 593-606.e9, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38039968

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotropic factor that modulates unfolded protein response (UPR) pathway signaling and alleviates endoplasmic reticulum (ER) stress providing cytoprotective effects in different models of neurodegenerative disorders. Here, we developed a brain-penetrating peptidomimetic compound based on human CDNF. This compound called HER-096 shows similar potency and mechanism of action as CDNF, and promotes dopamine neuron survival, reduces α-synuclein aggregation and modulates UPR signaling in in vitro models. HER-096 is metabolically stable and able to penetrate to cerebrospinal (CSF) and brain interstitial fluids (ISF) after subcutaneous administration, with an extended CSF and brain ISF half-life compared to plasma. Subcutaneously administered HER-096 modulated UPR pathway activity, protected dopamine neurons, and reduced α-synuclein aggregates and neuroinflammation in substantia nigra of aged mice with synucleinopathy. Peptidomimetic HER-096 is a candidate for development of a disease-modifying therapy for Parkinson's disease with a patient-friendly route of administration.


Asunto(s)
Enfermedad de Parkinson , Peptidomiméticos , Sinucleinopatías , Humanos , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Neuronas Dopaminérgicas , alfa-Sinucleína , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Encéfalo , Factores de Crecimiento Nervioso
4.
Mov Disord ; 38(7): 1209-1222, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37212361

RESUMEN

BACKGROUND: Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that protects dopamine neurons and improves motor function in animal models of Parkinson's disease (PD). OBJECTIVE: The primary objectives of this study were to assess the safety and tolerability of both CDNF and the drug delivery system (DDS) in patients with PD of moderate severity. METHODS: We assessed the safety and tolerability of monthly intraputamenal CDNF infusions in patients with PD using an investigational DDS, a bone-anchored transcutaneous port connected to four catheters. This phase 1 trial was divided into a placebo-controlled, double-blind, 6-month main study followed by an active-treatment 6-month extension. Eligible patients, aged 35 to 75 years, had moderate idiopathic PD for 5 to 15 years and Hoehn and Yahr score ≤ 3 (off state). Seventeen patients were randomized to placebo (n = 6), 0.4 mg CDNF (n = 6), or 1.2 mg CDNF (n = 5). The primary endpoints were safety and tolerability of CDNF and DDS and catheter implantation accuracy. Secondary endpoints were measures of PD symptoms, including Unified Parkinson's Disease Rating Scale, and DDS patency and port stability. Exploratory endpoints included motor symptom assessment (PKG, Global Kinetics Pty Ltd, Melbourne, Australia) and positron emission tomography using dopamine transporter radioligand [18 F]FE-PE2I. RESULTS: Drug-related adverse events were mild to moderate with no difference between placebo and treatment groups. No severe adverse events were associated with the drug, and device delivery accuracy met specification. The severe adverse events recorded were associated with the infusion procedure and did not reoccur after procedural modification. There were no significant changes between placebo and CDNF treatment groups in secondary endpoints between baseline and the end of the main and extension studies. CONCLUSIONS: Intraputamenally administered CDNF was safe and well tolerated, and possible signs of biological response to the drug were observed in individual patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Dopamina , Factores de Crecimiento Nervioso/fisiología , Factores de Crecimiento Nervioso/uso terapéutico , Neuronas Dopaminérgicas , Sistemas de Liberación de Medicamentos , Método Doble Ciego
5.
Sci Transl Med ; 15(691): eabq2915, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37043557

RESUMEN

Tauopathies are neurodegenerative diseases that are characterized by accumulation of hyperphosphorylated tau protein, higher-order aggregates, and tau filaments. Protein phosphatase 2A (PP2A) is a major tau dephosphorylating phosphatase, and a decrease in its activity has been demonstrated in tauopathies, including Alzheimer's disease. Prolyl oligopeptidase is a serine protease that is associated with neurodegeneration, and its inhibition normalizes PP2A activity without toxicity under pathological conditions. Here, we assessed whether prolyl oligopeptidase inhibition could protect against tau-mediated toxicity in cellular models in vitro and in the PS19 transgenic mouse model of tauopathy carrying the human tau-P301S mutation. We show that inhibition of prolyl oligopeptidase with the inhibitor KYP-2047 reduced tau aggregation in tau-transfected HEK-293 cells and N2A cells as well as in human iPSC-derived neurons carrying either the P301L or tau-A152T mutation. Treatment with KYP-2047 resulted in increased PP2A activity and activation of autophagic flux in HEK-293 cells and N2A cells and in patient-derived iNeurons, as indicated by changes in autophagosome and autophagy receptor markers; this contributed to clearance of insoluble tau. Furthermore, treatment of PS19 transgenic mice for 1 month with KYP-2047 reduced tau burden in the brain and cerebrospinal fluid and slowed cognitive decline according to several behavioral tests. In addition, a reduction in an oxidative stress marker was seen in mouse brains after KYP-2047 treatment. This study suggests that inhibition of prolyl oligopeptidase could help to ameliorate tau-dependent neurodegeneration.


Asunto(s)
Prolil Oligopeptidasas , Tauopatías , Ratones , Humanos , Animales , Células HEK293 , Tauopatías/metabolismo , Proteínas tau/metabolismo , Ratones Transgénicos , Serina Endopeptidasas/metabolismo , Inhibidores Enzimáticos , Modelos Animales de Enfermedad
6.
Cell Death Dis ; 14(2): 128, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792604

RESUMEN

During intracerebral hemorrhage (ICH), hematoma formation at the site of blood vessel damage results in local mechanical injury. Subsequently, erythrocytes lyse to release hemoglobin and heme, which act as neurotoxins and induce inflammation and secondary brain injury, resulting in severe neurological deficits. Accelerating hematoma resorption and mitigating hematoma-induced brain edema by modulating immune cells has potential as a novel therapeutic strategy for functional recovery after ICH. Here, we show that intracerebroventricular administration of recombinant human cerebral dopamine neurotrophic factor (rhCDNF) accelerates hemorrhagic lesion resolution, reduces peri-focal edema, and improves neurological outcomes in an animal model of collagenase-induced ICH. We demonstrate that CDNF acts on microglia/macrophages in the hemorrhagic striatum by promoting scavenger receptor expression, enhancing erythrophagocytosis and increasing anti-inflammatory mediators while suppressing the production of pro-inflammatory cytokines. Administration of rhCDNF results in upregulation of the Nrf2-HO-1 pathway, but alleviation of oxidative stress and unfolded protein responses in the perihematomal area. Finally, we demonstrate that intravenous delivery of rhCDNF has beneficial effects in an animal model of ICH and that systemic application promotes scavenging by the brain's myeloid cells for the treatment of ICH.


Asunto(s)
Edema Encefálico , Lesiones Encefálicas , Animales , Humanos , Hemorragia Cerebral/complicaciones , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Inflamación/complicaciones , Hematoma/tratamiento farmacológico , Hematoma/complicaciones , Hematoma/metabolismo , Inmunidad Innata , Modelos Animales de Enfermedad , Edema Encefálico/complicaciones , Factores de Crecimiento Nervioso/uso terapéutico
7.
Genes (Basel) ; 12(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34680924

RESUMEN

Clinical trials in neurodegenerative disorders have been associated with high rate of failures, while in oncology, the implementation of precision medicine and focus on genetically defined subtypes of disease and targets for drug development have seen an unprecedented success. With more than 20 genes associated with Parkinson's disease (PD), most of which are highly penetrant and often cause early onset or atypical signs and symptoms, and an increasing understanding of the associated pathophysiology culminating in dopaminergic neurodegeneration, applying the technologies and designs into the field of neurodegeneration seems a logical step. This review describes some of the methods used in oncology clinical trials and some attempts in Parkinson's disease and the potential of further implementing genetics, biomarkers and smart clinical trial designs in this disease area.


Asunto(s)
Ensayos Clínicos como Asunto , Enfermedad de Parkinson/genética , Antiparkinsonianos/uso terapéutico , Humanos , Terapia Molecular Dirigida/métodos , Enfermedad de Parkinson/tratamiento farmacológico , Medicina de Precisión/métodos
8.
Biosci Rep ; 41(8)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34308969

RESUMEN

Misfolded, pathological tau protein propagates from cell to cell causing neuronal degeneration in Alzheimer's disease and other tauopathies. The molecular mechanisms of this process have remained elusive. Unconventional secretion of tau takes place via several different routes, including direct penetration through the plasma membrane. Here, we show that tau secretion requires membrane interaction via disulphide bridge formation. Mutating residues that reduce tau interaction with membranes or formation of disulphide bridges decrease both tau secretion from cells, and penetration through artificial lipid membranes. Our results demonstrate that tau is indeed able to penetrate protein-free membranes in a process independent of active cellular processes and that both membrane interaction and disulphide bridge formation are needed for this process. QUARK-based de novo modelling of the second and third microtubule-binding repeat domains (MTBDs), in which the two cysteine residues of 4R isoforms of tau are located, supports the concept that this region of tau could form transient amphipathic helices for membrane interaction.


Asunto(s)
Membrana Celular/metabolismo , Disulfuros/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Animales , Línea Celular Tumoral , Cisteína , Disulfuros/química , Humanos , Ratones , Modelos Moleculares , Mutación , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Vías Secretoras , Relación Estructura-Actividad , Proteínas tau/química , Proteínas tau/genética
9.
Mol Ther ; 29(9): 2821-2840, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940158

RESUMEN

A molecular hallmark in Parkinson's disease (PD) pathogenesis are α-synuclein aggregates. Cerebral dopamine neurotrophic factor (CDNF) is an atypical growth factor that is mostly resident in the endoplasmic reticulum but exerts its effects both intracellularly and extracellularly. One of the beneficial effects of CDNF can be protecting neurons from the toxic effects of α-synuclein. Here, we investigated the effects of CDNF on α-synuclein aggregation in vitro and in vivo. We found that CDNF directly interacts with α-synuclein with a KD = 23 ± 6 nM and reduces its auto-association. Using nuclear magnetic resonance (NMR) spectroscopy, we identified interaction sites on the CDNF protein. Remarkably, CDNF reduces the neuronal internalization of α-synuclein fibrils and induces the formation of insoluble phosphorylated α-synuclein inclusions. Intra-striatal CDNF administration alleviates motor deficits in rodents challenged with α-synuclein fibrils, though it did not reduce the number of phosphorylated α-synuclein inclusions in the substantia nigra. CDNF's beneficial effects on rodent behavior appear not to be related to the number of inclusions formed in the current context, and further study of its effects on the aggregation mechanism in vivo are needed. Nonetheless, the interaction of CDNF with α-synuclein, modifying its aggregation, spreading, and associated behavioral alterations, provides novel insights into the potential of CDNF as a therapeutic strategy in PD and other synucleinopathies.


Asunto(s)
Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/metabolismo , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animales , Sitios de Unión , Línea Celular , Modelos Animales de Enfermedad , Dopamina/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Modelos Moleculares , Enfermedad de Parkinson/metabolismo , Fosforilación , Cultivo Primario de Células , Agregado de Proteínas , Unión Proteica , Conformación Proteica , Ratas
10.
Sci Rep ; 11(1): 8310, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859272

RESUMEN

Amblyopia is a developmental disorder associated with abnormal visual experience during early childhood commonly arising from strabismus and/or anisometropia and leading to dysfunctions in visual cortex and to various visual deficits. The different forms of neuronal activity that are attenuated in amblyopia have been only partially characterized. In electrophysiological recordings of healthy human brain, the presentation of visual stimuli is associated with event-related activity and oscillatory responses. It has remained poorly understood whether these forms of activity are reduced in amblyopia and whether possible dysfunctions would arise from lower- or higher-order visual areas. We recorded neuronal activity with magnetoencephalography (MEG) from anisometropic amblyopic patients and control participants during two visual tasks presented separately for each eye and estimated neuronal activity from source-reconstructed MEG data. We investigated whether event-related and oscillatory responses would be reduced for amblyopia and localized their cortical sources. Oscillation amplitudes and evoked responses were reduced for stimuli presented to the amblyopic eye in higher-order visual areas and in parietal and prefrontal cortices. Importantly, the reduction of oscillation amplitudes but not that of evoked responses was correlated with decreased visual acuity in amblyopia. These results show that attenuated oscillatory responses are correlated with visual deficits in anisometric amblyopia.


Asunto(s)
Ambliopía/diagnóstico , Ambliopía/fisiopatología , Potenciales Evocados , Magnetoencefalografía/métodos , Agudeza Visual , Corteza Visual/fisiopatología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa
11.
Front Mol Neurosci ; 13: 569818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071756

RESUMEN

The progressive accumulation and spread of misfolded tau protein in the nervous system is the hallmark of tauopathies, progressive neurodegenerative diseases with only symptomatic treatments available. A growing body of evidence suggests that spreading of tau pathology can occur via cell-to-cell transfer involving secretion and internalization of pathological forms of tau protein followed by templated misfolding of normal tau in recipient cells. Several studies have addressed the cell biological mechanisms of tau secretion. It now appears that instead of a single mechanism, cells can secrete tau via three coexisting pathways: (1) translocation through the plasma membrane; (2) membranous organelles-based secretion; and (3) ectosomal shedding. The relative importance of these pathways in the secretion of normal and pathological tau is still elusive, though. Moreover, glial cells contribute to tau propagation, and the involvement of different cell types, as well as different secretion pathways, complicates the understanding of prion-like propagation of tauopathy. One of the important regulators of tau secretion in neuronal activity, but its mechanistic connection to tau secretion remains unclear and may involve all three secretion pathways of tau. This review article summarizes recent advancements in the field of tau secretion with an emphasis on cell biological aspects of the secretion process and discusses the role of neuronal activity and glial cells in the spread of pathological forms of tau.

12.
Sci Rep ; 10(1): 17661, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077786

RESUMEN

Different types of carbon materials are biocompatible with neural cells and can promote maturation. The mechanism of this effect is not clear. Here we have tested the capacity of a carbon material composed of amorphous sp3 carbon backbone, embedded with a percolating network of sp2 carbon domains to sustain neuronal cultures. We found that cortical neurons survive and develop faster on this novel carbon material. After 3 days in culture, there is a precocious increase in the frequency of neuronal activity and in the expression of maturation marker KCC2 on carbon films as compared to a commonly used glass surface. Accelerated development is accompanied by a dramatic increase in neuronal dendrite arborization. The mechanism for the precocious maturation involves the activation of intracellular calcium oscillations by the carbon material already after 1 day in culture. Carbon-induced oscillations are independent of network activity and reflect intrinsic spontaneous activation of developing neurons. Thus, these results reveal a novel mechanism for carbon material-induced neuronal survival and maturation.


Asunto(s)
Calcio/metabolismo , Carbono , Diferenciación Celular , Neuronas/fisiología , Dendritas/fisiología , Humanos , Red Nerviosa , Neuronas/metabolismo
13.
J Parkinsons Dis ; 10(3): 875-891, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508331

RESUMEN

The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/terapia , Animales , Neuronas Dopaminérgicas/metabolismo , Terapia Genética/métodos , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Humanos , Enfermedad de Parkinson/metabolismo
14.
Biomed Pharmacother ; 128: 110253, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32447211

RESUMEN

Previous studies have shown that prolyl oligopeptidase (PREP) negatively regulates autophagy and increases the aggregation of alpha-synuclein (αSyn), linking it to the pathophysiology of Parkinson's disease. Our earlier results have revealed that the potent small molecular PREP inhibitor KYP-2047 is able to increase autophagy and decrease dimerization of αSyn but other PREP inhibitors have not been systematically studied for these two protein-protein interaction mediated biological functions of PREP. In this study, we characterized these effects for 12 known PREP inhibitors with IC50-values ranging from 0.2 nM to 1010 nM. We used protein-fragment complementation assay (PCA) to assess αSyn dimerization and Western Blot of microtubule-associated protein light chain 3B II (LC3B-II) and a GFP-LC3-RFP expressing cell line to study autophagy. In addition, we tested selected compounds in a cell-free αSyn aggregation assay, native gel electrophoresis, and determined the compound concentration inside the cell by LC-MS. We found that inhibition of the proteolytic activity of PREP did not predict decreased αSyn dimerization or increased autophagy, and we also confirmed that this result did not simply reflect concentration differences of the compounds inside the cell. Thus, PREP ligands regulate the effect of PREP on autophagy and αSyn aggregation through a conformational stabilization of the enzyme that is not equivalent to inhibiting its proteolytic activity.


Asunto(s)
Antiparkinsonianos/farmacología , Autofagia/efectos de los fármacos , Prolina/análogos & derivados , Prolil Oligopeptidasas/antagonistas & inhibidores , Inhibidores de Serina Proteinasa/farmacología , alfa-Sinucleína/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Prolina/farmacología , Prolil Oligopeptidasas/genética , Prolil Oligopeptidasas/metabolismo , Agregado de Proteínas , Multimerización de Proteína
15.
Cell Mol Life Sci ; 77(9): 1721-1744, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31667556

RESUMEN

Accumulation of misfolded and aggregated forms of tau protein in the brain is a neuropathological hallmark of tauopathies, such as Alzheimer's disease and frontotemporal lobar degeneration. Tau aggregates have the ability to transfer from one cell to another and to induce templated misfolding and aggregation of healthy tau molecules in previously healthy cells, thereby propagating tau pathology across different brain areas in a prion-like manner. The molecular mechanisms involved in cell-to-cell transfer of tau aggregates are diverse, not mutually exclusive and only partially understood. Intracellular accumulation of misfolded tau induces several mechanisms that aim to reduce the cellular burden of aggregated proteins and also promote secretion of tau aggregates. However, tau may also be released from cells physiologically unrelated to protein aggregation. Tau secretion involves multiple vesicular and non-vesicle-mediated pathways, including secretion directly through the plasma membrane. Consequently, extracellular tau can be found in various forms, both as a free protein and in vesicles, such as exosomes and ectosomes. Once in the extracellular space, tau aggregates can be internalized by neighboring cells, both neurons and glial cells, via endocytic, pinocytic and phagocytic mechanisms. Importantly, accumulating evidence suggests that prion-like propagation of misfolding protein pathology could provide a general mechanism for disease progression in tauopathies and other related neurodegenerative diseases. Here, we review the recent literature on cellular mechanisms involved in cell-to-cell transfer of tau, with a particular focus in tau secretion.


Asunto(s)
Agregación Patológica de Proteínas/complicaciones , Tauopatías/patología , Proteínas tau/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Tauopatías/etiología , Tauopatías/metabolismo
16.
Biosci Rep ; 40(1)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31850494

RESUMEN

The plasma membrane consists of a variety of discrete domains differing from the surrounding membrane in composition and properties. Selective partitioning of protein to these microdomains is essential for membrane functioning and integrity. Studying the nanoscale size and dynamic nature of the membrane microdomains requires advanced imaging approaches with a high spatiotemporal resolution and, consequently, expensive and specialized equipment, unavailable for most researchers and unsuited for large-scale studies. Thus, understanding of protein partitioning to the membrane microdomains in health and disease is still hampered by the lack of inexpensive live-cell approaches with an appropriate spatial resolution. Here, we have developed a novel approach based on Gaussia princeps luciferase protein-fragment complementation assay to quantitively investigate protein partitioning to cholesterol and sphingomyelin-rich domains, sometimes called 'lipid rafts', in intact living cells with a high-spatial resolution. In the assay, the reporter construct, carrying one half of the luciferase protein, is targeted to lipid microdomains through the fused acetylation motif from Src-family kinase Fyn. A protein of interest carries the second half of the luciferase protein. Together, this serves as a reversible real-time sensor of raft recruitment for the studied protein. We demonstrated that the assay can efficiently detect the dynamic alterations in raft localization of two disease-associated proteins: Akt and APP. Importantly, this method can be used in high-throughput screenings and other large-scale studies in living cells. This inexpensive, and easy to implement raft localization assay will benefit all researchers interested in protein partitioning in rafts.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Técnicas Biosensibles , Luciferasas/metabolismo , Microdominios de Membrana/metabolismo , Microscopía Fluorescente , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular Tumoral , Humanos , Luciferasas/genética , Ratones , Fragmentos de Péptidos/genética , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
17.
Semin Cell Dev Biol ; 99: 55-64, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29738880

RESUMEN

α-synuclein and Tau are proteins prone to pathological misfolding and aggregation that are normally found in the presynaptic and axonal compartments of neurons. Misfolding initiates a homo-oligomerization and aggregation cascade culminating in cerebral accumulation of aggregated α-synuclein and Tau in insoluble protein inclusions in multiple neurodegenerative diseases. Traditionally, α-synuclein-containing Lewy bodies have been associated with Parkinson's disease and Tau-containing neurofibrillary tangles with Alzheimer's disease and various frontotemporal dementia syndromes. However, there is significant overlap and co-occurrence of α-synuclein and Tau pathologies in a spectrum of neurodegenerative diseases. Importantly, α-synuclein and Tau can interact in cells, and their pathological conformations are capable of templating further misfolding and aggregation of each other. They also share a number of protein interactors indicating that network perturbations may contribute to chronic proteotoxic stress and neuronal dysfunction in synucleinopathies and tauopathies, some of which share similarities in both neuropathological and clinical manifestations. In this review, we focus on the protein interactions of these two pathologically important proteins and consider a network biology perspective towards neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/patología , alfa-Sinucleína/química , Proteínas tau/química
18.
Cell Transplant ; 28(4): 349-366, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947516

RESUMEN

Neurotrophic factors (NTF) are a subgroup of growth factors that promote survival and differentiation of neurons. Due to their neuroprotective and neurorestorative properties, their therapeutic potential has been tested in various neurodegenerative diseases. Bioavailability of NTFs in the target tissue remains a major challenge for NTF-based therapies. Various intracerebral delivery approaches, both protein and gene transfer-based, have been tested with varying outcomes. Three growth factors, glial cell-line derived neurotrophic factor (GDNF), neurturin (NRTN) and platelet-derived growth factor (PDGF-BB) have been tested in clinical trials in Parkinson's disease (PD) during the past 20 years. A new protein can now be added to this list, as cerebral dopamine neurotrophic factor (CDNF) has recently entered clinical trials. Despite their misleading names, CDNF, together with its closest relative mesencephalic astrocyte-derived neurotrophic factor (MANF), form a novel family of unconventional NTF that are both structurally and mechanistically distinct from other growth factors. CDNF and MANF are localized mainly to the lumen of endoplasmic reticulum (ER) and their primary function appears to be modulation of the unfolded protein response (UPR) pathway. Prolonged ER stress, via the UPR signaling pathways, contributes to the pathogenesis in a number of chronic degenerative diseases, and is an important target for therapeutic modulation. Intraputamenally administered recombinant human CDNF has shown robust neurorestorative effects in a number of small and large animal models of PD, and had a good safety profile in preclinical toxicology studies. Intermittent monthly bilateral intraputamenal infusions of CDNF are currently being tested in a randomized placebo-controlled phase I-II clinical study in moderately advanced PD patients. Here, we review the history of growth factor-based clinical trials in PD, and discuss how CDNF differs from the previously tested growth factors.


Asunto(s)
Factores de Crecimiento Nervioso/genética , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/genética , Humanos , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/patología
19.
Cell Rep ; 25(8): 2027-2035.e4, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463001

RESUMEN

Tauopathies are characterized by cerebral accumulation of Tau protein aggregates that appear to spread throughout the brain via a cell-to-cell transmission process that includes secretion and uptake of pathological Tau, followed by templated misfolding of normal Tau in recipient cells. Here, we show that phosphorylated, oligomeric Tau clusters at the plasma membrane in N2A cells and is secreted in vesicle-free form in an unconventional process sensitive to changes in membrane properties, particularly cholesterol and sphingomyelin content. Cell surface heparan sulfate proteoglycans support Tau secretion, possibly by facilitating its release after membrane penetration. Notably, secretion of endogenous Tau from primary cortical neurons is mediated, at least partially, by a similar mechanism. We suggest that Tau is released from cells by an unconventional secretory mechanism that involves its phosphorylation and oligomerization and that membrane interaction may help Tau to acquire properties that allow its escape from cells directly through the plasma membrane.


Asunto(s)
Proteínas tau/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Catequina/análogos & derivados , Catequina/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Heparina/análogos & derivados , Heparina/metabolismo , Lípidos/química , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteoglicanos/metabolismo , Ratas , Proteínas tau/ultraestructura
20.
Medicines (Basel) ; 5(3)2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061484

RESUMEN

Background: Heparin and heparin-related sulphated carbohydrates inhibit ligand binding of the receptor for advanced glycation end products (RAGE). Here, we have studied the ability of heparin to inhibit homophilic interactions of RAGE in living cells and studied how heparin related structures interfere with RAGE⁻ligand interactions. Methods: Homophilic interactions of RAGE were studied with bead aggregation and living cell protein-fragment complementation assays. Ligand binding was analyzed with microwell binding and chromatographic assays. Cell surface advanced glycation end product binding to RAGE was studied using PC3 cell adhesion assay. Results: Homophilic binding of RAGE was mediated by V1- and modulated by C2-domain in bead aggregation assay. Dimerisation of RAGE on the living cell surface was inhibited by heparin. Sulphated K5 carbohydrate fragments inhibited RAGE binding to amyloid ß-peptide and HMGB1. The inhibition was dependent on the level of sulfation and the length of the carbohydrate backbone. α-d-Glucopyranosiduronic acid (glycyrrhizin) inhibited RAGE binding to advanced glycation end products in PC3 cell adhesion and protein binding assays. Further, glycyrrhizin inhibited HMGB1 and HMGB1 A-box binding to heparin. Conclusions: Our results show that K5 polysaccharides and glycyrrhizin are promising candidates for RAGE targeting drug development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA