Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 24(7): 102759, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34278266

RESUMEN

Osteosarcoma remains one of the deadliest cancers in pediatrics and young adults. We administered two types of immunotherapies, oncolytic virotherapy and immune checkpoint inhibition, to two murine osteosarcoma models and observed divergent results. Mice bearing F420 showed no response, whereas those with K7M2 showed prolonged survival in response to combination therapy. K7M2 had higher expression of immune-related genes and higher baseline immune cell infiltrates, but there were no significant differences in tumor mutational burden or predicted MHC class I binding of nonsynonymous mutations. Instead, we found several mouse endogenous retrovirus sequences highly expressed in K7M2 compared with F420. T cell tetramer staining for one of them, gp70, was detected in mice with K7M2 but not F420, suggesting that endogenous retrovirus proteins are targets for the anti-tumor immune reaction. Given prior observations of endogenous retrovirus expression in human osteosarcomas, our findings may be translatable to human disease.

2.
Viruses ; 10(3)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543735

RESUMEN

High Mobility Group Box 1 (HMGB1) is a multifunctional protein that plays various roles in the processes of inflammation, cancer, and other diseases. Many reports document abundant HMGB1 release following infection with oncolytic viruses (OVs). Further, other groups including previous reports from our laboratory highlight the synergistic effects of OVs with chemotherapy drugs. Here, we show that virus-free supernatants have varying cytotoxic potential, and HMGB1 is actively secreted by two established fibroblast cell lines (NIH 3T3 and 3T6-Swiss albino) following HSV1716 infection in vitro. Further, pharmacologic inhibition or genetic knock-down of HMGB1 reveals a role for HMGB1 in viral restriction, the ability to modulate bystander cell proliferation, and drug sensitivity in 3T6 cells. These data further support the multifactorial role of HMGB1, and suggest it could be a target for modulating the efficacy of oncolytic virus therapies alone or in combination with other frontline cancer treatments.


Asunto(s)
Proteína HMGB1/metabolismo , Herpes Simple/metabolismo , Herpes Simple/virología , Simplexvirus/fisiología , Animales , Efecto Espectador/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Técnicas de Silenciamiento del Gen , Proteína HMGB1/genética , Herpes Simple/tratamiento farmacológico , Humanos , Ratones , Células 3T3 NIH , Virus Oncolíticos/fisiología , Simplexvirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
3.
Mol Ther Oncolytics ; 6: 22-30, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28649600

RESUMEN

Pediatric brain tumors including medulloblastoma and atypical teratoid/rhabdoid tumor are associated with significant mortality and treatment-associated morbidity. While medulloblastoma tumors within molecular subgroups 3 and 4 have a propensity to metastasize, atypical teratoid/rhabdoid tumors frequently afflict a very young patient population. Adjuvant treatment options for children suffering with these tumors are not only sub-optimal but also associated with many neurocognitive obstacles. A potentially novel treatment approach is oncolytic virotherapy, a developing therapeutic platform currently in early-phase clinical trials for pediatric brain tumors and recently US Food and Drug Administration (FDA)-approved to treat melanoma in adults. We evaluated the therapeutic potential of the clinically available oncolytic herpes simplex vector rRp450 in cell lines derived from medulloblastoma and atypical teratoid/rhabdoid tumor. Cells of both tumor types were supportive of virus replication and virus-mediated cytotoxicity. Orthotopic xenograft models of medulloblastoma and atypical teratoid/rhabdoid tumors displayed significantly prolonged survival following a single, stereotactic intratumoral injection of rRp450. Furthermore, addition of the chemotherapeutic prodrug cyclophosphamide (CPA) enhanced rRp450's in vivo efficacy. In conclusion, oncolytic herpes viruses with the ability to bioactivate the prodrug CPA within the tumor microenvironment warrant further investigation as a potential therapy for pediatric brain tumors.

4.
Oncotarget ; 8(11): 17412-17427, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28147331

RESUMEN

Malignant peripheral nerve sheath tumor (MPNST) and neuroblastoma models respond to the investigational small molecule Aurora A kinase inhibitor, alisertib. We previously reported that MPNST and neuroblastomas are also susceptible to oncolytic herpes virus (oHSV) therapy. Herein, we show that combination of alisertib and HSV1716, a virus derived from HSV-1 and attenuated by deletion of RL1, exhibits significantly increased antitumor efficacy compared to either monotherapy. Alisertib and HSV1716 reduced tumor growth and increased survival in two xenograft models of MPNST and neuroblastoma. We found the enhanced antitumor effect was due to multiple mechanisms that likely each contribute to the combination effect. First, oncolytic herpes virus increased the sensitivity of uninfected cells to alisertib cytotoxicity, a process we term virus-induced therapeutic adjuvant (VITA). Second, alisertib increased peak virus production and slowed virus clearance from tumors, both likely a consequence of it preventing virus-mediated increase of intratumoral NK cells. We also found that alisertib inhibited virus-induced accumulation of intratumoral myeloid derived suppressor cells, which normally are protumorigenic. Our data suggest that clinical trials of the combination of oHSV and alisertib are warranted in patients with neuroblastoma or MPNST.


Asunto(s)
Antineoplásicos/administración & dosificación , Azepinas/administración & dosificación , Neurilemoma/patología , Neuroblastoma/patología , Viroterapia Oncolítica/métodos , Pirimidinas/administración & dosificación , Animales , Aurora Quinasa A/antagonistas & inhibidores , Western Blotting , Línea Celular Tumoral , Terapia Combinada , Citotoxicidad Inmunológica/inmunología , Femenino , Citometría de Flujo , Herpesvirus Humano 1 , Humanos , Inmunidad Innata/inmunología , Inmunohistoquímica , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Pediatr Blood Cancer ; 63(4): 618-26, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26575538

RESUMEN

BACKGROUND: Over 10,000 US children are diagnosed with cancer yearly. Though outcomes have improved by optimizing conventional therapies, recent immunotherapeutic successes in adult cancers are emerging. Cytotoxic T lymphocytes (CTLs) are the primary executioners of adaptive antitumor immunity and require antigenic presentation in the context of major histocompatibility complex (MHC) class I and the associated ß-2-microglobulin (B2M). Loss of MHC I expression is a common immune escape mechanism in adult malignancies, but pediatric cancers have not been thoroughly characterized. The essential nature of MHC I expression in CTL-mediated cell death may dictate the success of immunotherapies, which rely on eliciting an adaptive response. PROCEDURE: We queried pediatric tumor microarray databases for MHC I and B2M gene expression. We detected MHC I in pediatric tumor cell lines by flow cytometry and characterized MHC I and B2M expression in patient samples by immunohistochemistry. To determine whether therapeutic approaches might enhance MHC I expression in selected models in vitro, we tested effects of exposure to IFN-γ and histone deacetylase inhibitors. RESULTS: Pediatric tumors overall, as well as samples within select individual tumor subtypes, exhibit wide ranges of MHC I and B2M gene and protein expression. For most cell lines tested, MHC I was inducible in vitro. CONCLUSIONS: MHC I and B2M expression vary among pediatric tumor types and should be evaluated as potential biomarkers, which might identify patients most likely to benefit from MHC I dependent immunotherapies. Modulation of MHC I expression may be a promising mechanism for enhancing MHC I dependent immunotherapeutic efficacy.


Asunto(s)
Ensayos Clínicos como Asunto/métodos , Antígenos de Histocompatibilidad Clase I/biosíntesis , Inmunoterapia/métodos , Neoplasias/inmunología , Selección de Paciente , Microglobulina beta-2/biosíntesis , Línea Celular Tumoral , Niño , Citometría de Flujo , Antígenos de Histocompatibilidad Clase I/análisis , Humanos , Inmunohistoquímica , Neoplasias/terapia , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Matrices Tisulares , Microglobulina beta-2/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...