Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 11(10): e0069122, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36073916

RESUMEN

Cupriavidus basilensis SRS was isolated from stream sediments from the Savannah River Site in South Carolina. Here, we report the draft genome sequence and annotation of Cupriavidus basilensis SRS. The genome contains 8,918,236 bp and 7,916 predicted protein-coding genes, with a total G+C content of 65.2%.

2.
Plants (Basel) ; 10(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34371641

RESUMEN

Huanglongbing (HLB), caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CaLas), is the primary biotic stress causing significant economic damage to the global citrus industry. Among the abiotic stresses, salinity affects citrus production worldwide, especially in arid and coastal regions. In this study, we evaluated open-pollinated seedlings of the S10 (a diploid rootstock produced from a cross between two siblings of the Hirado Buntan Pink pummelo (Citrus maxima (Burm.) Merr.) with the Shekwasha mandarin (Citrus reticulata Blanco)) for their ability to tolerate HLB and salinity stresses. In a greenhouse study, 'Valencia' sweet orange (either HLB-positive or negative) was grafted onto six clonally propagated lines generated from the screened seedlings in the greenhouse and the trees were irrigated with 150 mM NaCl after eight months of successful grafting and detection of CaLas in the leaf petioles. Cleopatra mandarin was used as a salt-tolerant and HLB-sensitive rootstock control. CaLas infection was monitored using a quantitative polymerase chain reaction before and after NaCl treatments. Following three months of NaCl treatment, 'Valencia' leaves on the S10 rootstock seedlings recorded lower levels of chlorophyll content compared to Cleopatra under similar conditions. Malondialdehyde content was higher in HLB-infected 'Valencia' grafted onto Cleopatra than in the S10 lines. Several plant defense-related genes were significantly upregulated in the S10 lines. Antioxidant and Na+ co-transporter genes were differentially regulated in these lines. Based on our results, selected S10 lines have potential as salt-tolerant rootstocks of 'Valencia' sweet orange under endemic HLB conditions. However, it is necessary to propagate selected lines through tissue culture or cuttings because of the high percentage of zygotic seedlings derived from S10.

3.
Sci Rep ; 10(1): 21404, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293614

RESUMEN

Shortening the juvenile stage in citrus and inducing early flowering has been the focus of several citrus genetic improvement programs. FLOWERING LOCUS T (FT) is a small phloem-translocated protein that regulates precocious flowering. In this study, two populations of transgenic Carrizo citrange rootstocks expressing either Citrus clementina FT1 or FT3 genes under the control of the Arabidopsis thaliana phloem specific SUCROSE SYNTHASE 2 (AtSUC2) promoter were developed. The transgenic plants were morphologically similar to the non-transgenic controls (non-transgenic Carrizo citrange), however, only AtSUC2-CcFT3 was capable of inducing precocious flowers. The transgenic lines produced flowers 16 months after transformation and flower buds appeared 30-40 days on juvenile immature scions grafted onto transgenic rootstock. Gene expression analysis revealed that the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and APETALA1 (AP1) were enhanced in the transgenics. Transcriptome profiling of a selected transgenic line showed the induction of genes in different groups including: genes from the flowering induction pathway, APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family genes, and jasmonic acid (JA) pathway genes. Altogether, our results suggested that ectopic expression of CcFT3 in phloem tissues of Carrizo citrange triggered the expression of several genes to mediate early flowering.


Asunto(s)
Quimera/fisiología , Perfilación de la Expresión Génica/métodos , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Quimera/genética , Citrus/genética , Citrus/fisiología , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Poncirus/genética , Poncirus/fisiología , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...