Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Hematol Oncol ; 13(1): 59, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831452

RESUMEN

Type I interferon (IFN) is a potent antitumoral drug, with an important history in the treatment of hematologic malignancies. However, its pleiotropic nature leads to severe dose-limiting toxicities that blunt its therapeutic potential. To achieve selective targeting of specific immune or tumor cells, AcTakines (Activity-on-Target Cytokines), i.e., immunocytokines utilizing attenuated cytokines, and clinically optimized A-Kines™ were developed. In syngeneic murine models, the CD20-targeted murine IFNα2-based AcTaferons (AFNs) have demonstrated clear antitumoral effects, with excellent tolerability. The current study explores the antitumoral potential of the humanized huCD20-Fc-AFN in 5 different humanized patient derived xenograft (PDX) models of huCD20+ aggressive B non-Hodgkin lymphomas (B-NHLs). The huCD20-Fc-AFN consists of a huCD20-specific single-domain antibody (VHH) linked through a heterodimeric 'knob-in-hole' human IgG1 Fc molecule to an attenuated huIFNα2 sequence. An in vitro targeting efficacy of up to 1.000-fold could be obtained, without detectable in vivo toxicities, except for selective (on-target) and reversible B cell depletion. Treatment with huCD20-Fc-AFN significantly increased the median overall survival (mOS) in both non-humanized (mOS 31 to 45 days; HR = 0.26; p = 0.001), and humanized NSG/NOG mice (mOS 34 to 80 days; HR = 0.37; p < 0.0001). In humanized mice, there was a trend for increased survival when compared to equimolar rituximab (mOS 49 to 80 days; HR = 0.73; p = 0.09). The antitumoral effects of huCD20-Fc-AFN were partly due to direct effects of type I IFN on the tumor cells, but additional effects via the human immune system are essential to obtain long-term remissions. To conclude, huCD20-Fc-AFN could provide a novel therapeutic strategy for huCD20-expressing aggressive B-NHLs.

2.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34772757

RESUMEN

BACKGROUND: Clinical success of therapeutic cancer vaccines depends on the ability to mount strong and durable antitumor T cell responses. To achieve this, potent cellular adjuvants are highly needed. Interleukin-1ß (IL-1ß) acts on CD8+ T cells and promotes their expansion and effector differentiation, but toxicity and undesired tumor-promoting side effects hamper efficient clinical application of this cytokine. METHODS: This 'cytokine problem' can be solved by use of AcTakines (Activity-on-Target cytokines), which represent fusions between low-activity cytokine mutants and cell type-specific single-domain antibodies. AcTakines deliver cytokine activity to a priori selected cell types and as such evade toxicity and unwanted off-target side effects. Here, we employ subcutaneous melanoma and lung carcinoma models to evaluate the antitumor effects of AcTakines. RESULTS: In this work, we use an IL-1ß-based AcTakine to drive proliferation and effector functionality of antitumor CD8+ T cells without inducing measurable toxicity. AcTakine treatment enhances diversity of the T cell receptor repertoire and empowers adoptive T cell transfer. Combination treatment with a neovasculature-targeted tumor necrosis factor (TNF) AcTakine mediates full tumor eradication and establishes immunological memory that protects against secondary tumor challenge. Interferon-γ was found to empower this AcTakine synergy by sensitizing the tumor microenvironment to TNF. CONCLUSIONS: Our data illustrate that anticancer cellular immunity can be safely promoted with an IL-1ß-based AcTakine, which synergizes with other immunotherapies for efficient tumor destruction.


Asunto(s)
Inmunoterapia/métodos , Interleucina-1/metabolismo , Neoplasias/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Linfocitos T CD8-positivos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones
3.
EMBO Mol Med ; 12(2): e11223, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31912630

RESUMEN

Systemic toxicities have severely limited the clinical application of tumor necrosis factor (TNF) as an anticancer agent. Activity-on-Target cytokines (AcTakines) are a novel class of immunocytokines with improved therapeutic index. A TNF-based AcTakine targeted to CD13 enables selective activation of the tumor neovasculature without any detectable toxicity in vivo. Upregulation of adhesion markers supports enhanced T-cell infiltration leading to control or elimination of solid tumors by, respectively, CAR T cells or a combination therapy with CD8-targeted type I interferon AcTakine. Co-treatment with a CD13-targeted type II interferon AcTakine leads to very rapid destruction of the tumor neovasculature and complete regression of large, established tumors. As no tumor markers are needed, safe and efficacious elimination of a broad range of tumor types becomes feasible.


Asunto(s)
Inmunoterapia , Neoplasias , Factor de Necrosis Tumoral alfa , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/terapia
4.
Cancer Res ; 75(16): 3373-83, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26141862

RESUMEN

Hepatocyte growth factor (HGF) and its receptor MET represent validated targets for cancer therapy. However, HGF/MET inhibitors being explored as cancer therapeutics exhibit cytostatic activity rather than cytotoxic activity, which would be more desired. In this study, we engineered an antagonistic anti-MET antibody that, in addition to blocking HGF/MET signaling, also kills MET-overexpressing cancer cells by antibody-dependent cellular cytotoxicity (ADCC). As a control reagent, we engineered the same antibody in an ADCC-inactive form that is similarly capable of blocking HGF/MET activity, but in the absence of any effector function. In comparing these two antibodies in multiple mouse models of cancer, including HGF-dependent and -independent tumor xenografts, we determined that the ADCC-enhanced antibody was more efficacious than the ADCC-inactive antibody. In orthotopic mammary carcinoma models, ADCC enhancement was crucial to deplete circulating tumor cells and to suppress metastases. Prompted by these results, we optimized the ADCC-enhanced molecule for clinical development, generating an antibody (ARGX-111) with improved pharmacologic properties. ARGX-111 competed with HGF for MET binding, inhibiting ligand-dependent MET activity, downregulated cell surface expression of MET, curbing HGF-independent MET activity, and engaged natural killer cells to kill MET-expressing cancer cells, displaying MET-specific cytotoxic activity. ADCC assays confirmed the cytotoxic effects of ARGX-111 in multiple human cancer cell lines and patient-derived primary tumor specimens, including MET-expressing cancer stem-like cells. Together, our results show how ADCC provides a therapeutic advantage over conventional HGF/MET signaling blockade and generates proof-of-concept for ARGX-111 clinical testing in MET-positive oncologic malignancies.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Unión Competitiva , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Citometría de Flujo , Humanos , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Proteínas Proto-Oncogénicas c-met/inmunología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
5.
Neurogastroenterol Motil ; 26(11): 1573-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25200007

RESUMEN

BACKGROUND: Cinaciguat (BAY 58-2667), an NO- and heme-independent sGC activator, was shown to be more effective when the heme-group of sGC is oxidized in vascular tissue. In apo-sGC mice (sGCß1 (His105Phe) knockin) both sGC isoforms (sGCα1 ß1 and sGCα2 ß1 ) are heme-deficient and can no longer be activated by NO; these mice, showing decreased gastrointestinal nitrergic relaxation and decreased gastric emptying, can be considered as a model to study the consequence of heme-oxidation in sGC. Our aim was to compare the influence of cinaciguat, on in vitro muscle tone of gastrointestinal tissues, and on gastric emptying in WT and apo-sGC mice. METHODS: Gastrointestinal smooth muscle strips were mounted in organ baths for isometric force recording and cGMP levels were determined by enzyme immunoassay. Protein levels of sGC subunits were assessed by immunoblotting. Gastric emptying was determined by phenol red recovery. KEY RESULTS: Although protein levels of the sGC subunits were lower in gastrointestinal tissues of apo-sGC mice, cinaciguat induced concentration-dependent relaxations and increased cGMP levels in apo-sGC fundus and colon to a similar or greater extent than in WT mice. The sGC inhibitor ODQ increased cinaciguat-induced relaxations and cGMP levels in WT fundus and colon. In apo-sGC antrum, pylorus and jejunum, cinaciguat was not able to induce relaxations. Cinaciguat did not improve delayed gastric emptying in apo-sGC mice. CONCLUSIONS & INFERENCES: Cinaciguat relaxes the fundus and colon efficiently when sGC is in the heme-free condition; the non-effect of cinaciguat in pylorus explains its inability to improve the delayed gastric emptying in apo-sGC mice.


Asunto(s)
Benzoatos/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Motilidad Gastrointestinal/fisiología , Guanilato Ciclasa/metabolismo , Animales , Ensayo de Inmunoadsorción Enzimática , Fundus Gástrico/metabolismo , Técnicas de Sustitución del Gen , Immunoblotting , Isoenzimas , Masculino , Ratones , Relajación Muscular/efectos de los fármacos , Relajación Muscular/fisiología , Tono Muscular/efectos de los fármacos , Tono Muscular/fisiología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Técnicas de Cultivo de Órganos
6.
MAbs ; 6(2): 523-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24492296

RESUMEN

Overexpression of CD70 has been documented in a variety of solid and hematological tumors, where it is thought to play a role in tumor proliferation and evasion of immune surveillance. Here, we describe ARGX-110, a defucosylated IgG1 monoclonal antibody (mAb) that selectively targets and neutralizes CD70, the ligand of CD27.   ARGX-110 was generated by immunization of outbred llamas. The antibody was germlined to 95% human identity, and its anti-tumor efficacy was tested in several in vitro assays. ARGX-110 binds CD70 with picomolar affinity. In depletion studies, ARGX-110 lyses tumor cells with greater efficacy than its fucosylated version. In addition, ARGX-110 demonstrates strong complement-dependent cytotoxicity and antibody-dependent cellular phagocytosis activity. ARGX-110 inhibits signaling of CD27, which results in blocking of the activation and proliferation of Tregs. In a Raji xenograft model, administration of the fucosylated version of ARGX-110 resulted in a prolonged survival at doses of 0.1 mg/kg and above. The pharmacokinetics of ARGX-110 was tested in cynomolgus monkeys; the calculated half-life is 12 days. In conclusion, ARGX-110 is a potent blocking mAb with a dual mode of action against both CD70-bearing tumor cells and CD70-dependent Tregs. This antibody is now in a Phase 1 study in patients with advanced malignancies expressing CD70 (NCT01813539).


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antineoplásicos/metabolismo , Ligando CD27/inmunología , Inmunoglobulina G/metabolismo , Inmunoterapia/métodos , Neoplasias/terapia , Linfocitos T Reguladores/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos/inmunología , Camélidos del Nuevo Mundo , Puntos de Control del Ciclo Celular/inmunología , Células Cultivadas , Humanos , Inmunoglobulina G/inmunología , Activación de Linfocitos/efectos de los fármacos , Neoplasias/inmunología , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...