Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 12(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37568345

RESUMEN

RESEARCH QUESTION: Clomiphene citrate (CC) is one of the first-line treatments for ovulation induction in women with anovulatory polycystic ovary syndrome (PCOS). However, nearly 1 out of 2 women is resistant to 50 mg/day of CC. The objective of this study is to investigate the clinical, biological, and/or ultrasound factors that may predict the resistance to 50 mg/day of CC in the first cycle of treatment in women with anovulatory PCOS. This would make it possible to identify PCOS patients to whom the dose of 100 mg/day would be offered as of the first cycle. DESIGN: A retrospective and monocentric study was conducted on 283 women with anovulatory PCOS who required the use of ovulation induction with CC (903 cycles). RESULTS: During the first cycle of treatment, 104 patients (36.8%) were resistant to 50 mg/day of CC. Univariate regression analysis showed that patients who resisted 50 mg/day of CC had significantly higher BMI, waist circumference, serum levels of AMH, total testosterone, Δ4-androstenedione, 17-OHP, and insulin (p < 0.05), compared to patients ovulating with this dose. Serum levels of SHBG were significantly lower in patients resistant to 50 mg/day (p < 0.05). After multivariate analysis, only AMH and SHBG remained statistically significant (p = 0.01 and p = 0.001, respectively). However, areas under the ROC curves were weak (0.59 and 0.68, respectively). CONCLUSION: AMH and SHBG are the only two parameters significantly associated with the risk of resistance to 50 mg/day of CC. However, no satisfactory thresholds have been established to predict resistance to 50 mg CC.

2.
Curr Biol ; 31(4): 722-732.e5, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33301710

RESUMEN

Production of leavened bread dates to the second millennium BCE. Since then, the art of bread making has developed, yet the evolution of bread-associated microbial species remains largely unknown. Nowadays, leavened bread is made either by using a pure commercial culture of the yeast Saccharomyces cerevisiae or by propagating a sourdough-a mix of flour and water spontaneously fermented by yeasts and bacteria. We studied the domestication of S. cerevisiae originating from industrial sources and artisanal sourdoughs and tested whether different bread-making processes led to population divergence. We found that S. cerevisiae bakery strains are polyphyletic with 67% of strains clustering into two main clades: most industrial strains were tetraploid and clustered with strains having diverse origins, including beer. By contrast, most sourdough strains were diploid and grouped in a second clade of strains having mosaic genomes and diverse origins, including fruits and natural environments. They harbored a higher copy number of genes involved in maltose utilization, and a high level of gene flow from multiple contributors was detected. Bakery strains displayed higher CO2 production than do strains from other domesticated lineages (such as beer and wine), revealing a specific phenotypic signature of domestication. Interestingly, industrial strains had a shorter fermentation onset than sourdough strains, which were better adapted to a sourdough-like environment, suggesting divergent selection by industrial and artisanal processes. Our results reveal that the domestication of bakery yeast has been accompanied by dispersion, hybridization, and divergent selection through industrial and artisanal processes.


Asunto(s)
Pan/microbiología , Domesticación , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/genética , Cerveza/microbiología , Fermentación , Fenotipo , Vino/microbiología
3.
Mob DNA ; 10: 30, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31346350

RESUMEN

BACKGROUND: Transposable elements (TEs) are genomic parasites with major impacts on host genome architecture and host adaptation. A proper evaluation of their evolutionary significance has been hampered by the paucity of short scale phylogenetic comparisons between closely related species. Here, we characterized the dynamics of TE accumulation at the micro-evolutionary scale by comparing two closely related plant species, Arabidopsis lyrata and A. halleri. RESULTS: Joint genome annotation in these two outcrossing species confirmed that both contain two distinct populations of TEs with either 'recent' or 'old' insertion histories. Identification of rare segregating insertions suggests that diverse TE families contribute to the ongoing dynamics of TE accumulation in the two species. Orthologous TE fragments (i.e. those that have been maintained in both species), tend to be located closer to genes than those that are retained in one species only. Compared to non-orthologous TE insertions, those that are orthologous tend to produce fewer short interfering RNAs, are less heavily methylated when found within or adjacent to genes and these tend to have lower expression levels. These findings suggest that long-term retention of TE insertions reflects their frequent acquisition of adaptive roles and/or the deleterious effects of removing nearly neutral TE insertions when they are close to genes. CONCLUSION: Our results indicate a rapid evolutionary dynamics of the TE landscape in these two outcrossing species, with an important input of a diverse set of new insertions with variable propensity to resist deletion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...