Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951488

RESUMEN

Two-dimensional (2D) hybrid organic/inorganic perovskites are an emerging materials class for optoelectronic and spintronic applications due to strong excitonic absorption and emission, large spin-orbit coupling, and Rashba spin-splitting effects. For many of the envisioned applications, tuning the majority charge carrier (electron or hole) concentration is desirable, but electronic doping of metal-halide perovskites has proven to be challenging. Here, we demonstrate electron injection into the lower-energy branch of the Rashba-split conduction band of 2D phenethylammonium lead iodide by means of n-type molecular doping at room temperature. The molecular dopant, benzyl viologen (BV), is shown to compensate adventitious p-type impurities and can lead to a tunable Fermi level above the conduction band minimum and increased conductivity in intrinsic samples. The doping-induced carrier concentration is monitored by the observation of free-carrier absorption and intraband optical transitions in the infrared spectral range. These optical measurements allow for an estimation of the Rashba splitting energy ER ≈38 ± 4 meV. Photoinduced quantum beating measurements demonstrate that the excess electron density reduces the electron spin g-factor by ca. 6%. This work demonstrates controllable carrier concentrations in hybrid organic/inorganic perovskites and yields potential for room temperature spin control through the Rashba effect.

2.
Nat Commun ; 15(1): 188, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168025

RESUMEN

Spintronics in halide perovskites has drawn significant attention in recent years, due to their highly tunable spin-orbit fields and intriguing interplay with lattice symmetry. Here, we perform first-principles calculations to determine the spin relaxation time (T1) and ensemble spin dephasing time ([Formula: see text]) in a prototype halide perovskite, CsPbBr3. To accurately capture spin dephasing in external magnetic fields we determine the Landé g-factor from first principles and take it into account in our calculations. These allow us to predict intrinsic spin lifetimes as an upper bound for experiments, identify the dominant spin relaxation pathways, and evaluate the dependence on temperature, external fields, carrier density, and impurities. We find that the Fröhlich interaction that dominates carrier relaxation contributes negligibly to spin relaxation, consistent with the spin-conserving nature of this interaction. Our theoretical approach may lead to new strategies to optimize spin and carrier transport properties.

3.
Metallomics ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463796

RESUMEN

As the second most abundant transition element and a crucial cofactor for many proteins, zinc is essential for the survival of all living organisms. To maintain required zinc levels and prevent toxic overload, cells and organisms have a collection of metal transport proteins for uptake and efflux of zinc. In bacteria, metal transport proteins are well defined for model organisms and many pathogens, but fewer studies have explored metal transport proteins, including those for zinc, in commensal bacteria from the gut microbiota. The healthy human gut microbiota comprises hundreds of species and among these, bacteria from the Lactobacillaceae family are well documented to have various beneficial effects on health. Furthermore, changes in dietary metal intake, such as for zinc and iron, are frequently correlated with changes in abundance of Lactobacillaceae. Few studies have explored zinc requirements and zinc homeostasis mechanisms in Lactobacillaceae, however. Here we applied a bioinformatics approach to identify and compare predicted zinc uptake and efflux proteins in several Lactobacillaceae genera of intestinal relevance. Few Lactobacillaceae had zinc transporters currently annotated in proteomes retrieved from the UniProt database, but protein sequence-based homology searches revealed that high-affinity ABC transporter genes are likely common, albeit with genus-specific domain features. P-type ATPase transporters are probably also common and some Lactobacillaceae genera code for predicted zinc efflux cation diffusion facilitators. This analysis confirms that Lactobacillaceae harbor genes for various zinc transporter homologs, and provides a foundation for systematic experimental studies to elucidate zinc homeostasis mechanisms in these bacteria.


Asunto(s)
Lactobacillaceae , Zinc , Humanos , Lactobacillaceae/metabolismo , Zinc/metabolismo , Metales/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/metabolismo , Biología Computacional
4.
BMJ Health Care Inform ; 30(1)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37344002

RESUMEN

Introduction In January, the National Institutes of Health (NIH) implemented a Data Management and Sharing Policy aiming to leverage data collected during NIH-funded research. The COVID-19 pandemic illustrated that this practice is equally vital for augmenting patient research. In addition, data sharing acts as a necessary safeguard against the introduction of analytical biases. While the pandemic provided an opportunity to curtail critical research issues such as reproducibility and validity through data sharing, this did not materialise in practice and became an example of 'Open Data in Appearance Only' (ODIAO). Here, we define ODIAO as the intent of data sharing without the occurrence of actual data sharing (eg, material or digital data transfers).Objective Propose a framework that states the main risks associated with data sharing, systematically present risk mitigation strategies and provide examples through a healthcare lens.Methods This framework was informed by critical aspects of both the Open Data Institute and the NIH's 2023 Data Management and Sharing Policy plan guidelines.Results Through our examination of legal, technical, reputational and commercial categories, we find barriers to data sharing ranging from misinterpretation of General Data Privacy Rule to lack of technical personnel able to execute large data transfers. From this, we deduce that at numerous touchpoints, data sharing is presently too disincentivised to become the norm.Conclusion In order to move towards Open Data, we propose the creation of mechanisms for incentivisation, beginning with recentring data sharing on patient benefits, additional clauses in grant requirements and committees to encourage adherence to data reporting practices.


Asunto(s)
COVID-19 , Humanos , Estados Unidos , Pandemias , Reproducibilidad de los Resultados , National Institutes of Health (U.S.) , Difusión de la Información/métodos
5.
Anal Chem ; 95(18): 7178-7185, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37102678

RESUMEN

Membrane proteins are vital in the human proteome for their cellular functions and make up a majority of drug targets in the U.S. However, characterizing their higher-order structures and interactions remains challenging. Most often membrane proteins are studied in artificial membranes, but such artificial systems do not fully account for the diversity of components present in cell membranes. In this study, we demonstrate that diethylpyrocarbonate (DEPC) covalent labeling mass spectrometry can provide binding site information for membrane proteins in living cells using membrane-bound tumor necrosis factor α (mTNFα) as a model system. Using three therapeutic monoclonal antibodies that bind TNFα, our results show that residues that are buried in the epitope upon antibody binding generally decrease in DEPC labeling extent. Additionally, serine, threonine, and tyrosine residues on the periphery of the epitope increase in labeling upon antibody binding because of a more hydrophobic microenvironment that is created. We also observe changes in labeling away from the epitope, indicating changes to the packing of the mTNFα homotrimer, compaction of the mTNFα trimer against the cell membrane, and/or previously uncharacterized allosteric changes upon antibody binding. Overall, DEPC-based covalent labeling mass spectrometry offers an effective means of characterizing structure and interactions of membrane proteins in living cells.


Asunto(s)
Proteínas de la Membrana , Tirosina , Humanos , Dietil Pirocarbonato/química , Espectrometría de Masas/métodos , Membrana Celular , Unión Proteica
6.
Bioconjug Chem ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36972480

RESUMEN

Targeted delivery of therapeutics using antibody-nanogel conjugates (ANCs) with a high drug-to-antibody ratio has the potential to overcome some of the inherent limitations of antibody-drug conjugates (ADCs). ANC platforms with simple preparation methods and precise tunability to evaluate structure-activity relationships will greatly contribute to translating this promise into clinical reality. In this work, using trastuzumab as a model antibody, we demonstrate a block copolymer-based ANC platform that allows highly efficient antibody conjugation and formulation. In addition to showcasing the advantages of using an inverse electron-demand Diels-Alder (iEDDA)-based antibody conjugation, we evaluate the influence of antibody surface density and conjugation site on the nanogels upon the targeting capability of ANCs. We show that compared to traditional strain-promoted alkyne-azide cycloadditions, the preparation of ANCs using iEDDA provides significantly higher efficiency, which results in a shortened reaction time, simplified purification process, and enhanced targeting toward cancer cells. We also find that a site-specific disulfide-rebridging method in antibodies offers similar targeting abilities as the more indiscriminate lysine-based conjugation method. The more efficient bioconjugation using iEDDA allows us to optimize the avidity by fine-tuning the surface density of antibodies on the nanogel. Finally, with trastuzumab-mertansine (DM1) antibody-drug combination, our ANC demonstrates superior activities in vitro compared to the corresponding ADC, further highlighting the potential of ANCs in future clinical translation.

7.
Biomacromolecules ; 24(2): 849-857, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639133

RESUMEN

Targeted drug delivery using antibody-drug conjugates has attracted great attention due to its enhanced therapeutic efficacy compared to traditional chemotherapy. However, the development has been limited due to a low drug-to-antibody ratio and laborious linker-payload optimization. Herein, we present a simple and efficient strategy to combine the favorable features of polymeric nanocarriers with antibodies to generate an antibody-nanogel conjugate (ANC) platform for targeted delivery of cytotoxic agents. Our nanogels stably encapsulate several chemotherapeutic agents with a wide range of mechanisms of action and solubility. We showcase the targetability of ANCs and their selective killing of cancer cells over-expressing disease-relevant antigens such as human epidermal growth factor receptor 2, epidermal growth factor receptor, and tumor-specific mucin 1, which cover a broad range of breast cancer cell types while maintaining low to no toxicity to non-targeted cells. Overall, our system represents a versatile approach that could impact next-generation nanomedicine in antibody-targeted therapeutics.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Nanogeles , Neoplasias/tratamiento farmacológico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral
8.
J Inorg Biochem ; 238: 112023, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270041

RESUMEN

Lactobacillaceae are a diverse family of lactic acid bacteria found in the gut microbiota of humans and many animals. These bacteria exhibit beneficial effects on intestinal health, including modulating the immune system and providing protection against pathogens, and many species are frequently used as probiotics. Gut bacteria acquire essential metal ions, like iron, zinc, and manganese, through the host diet and changes to the levels of these metals are often linked to alterations in microbial community composition, susceptibility to infection, and gastrointestinal diseases. Lactobacillaceae are frequently among the organisms increased or decreased in abundance due to changes in metal availability, yet many of the molecular mechanisms underlying these changes have yet to be defined. Metal requirements and metallotransporters have been studied in some species of Lactobacillaceae, but few of the mechanisms used by these bacteria to respond to metal limitation or excess have been investigated. This review provides a current overview of these mechanisms and covers how iron, zinc, and manganese impact Lactobacillaceae in the gut microbiota with an emphasis on their biochemical roles, requirements, and homeostatic mechanisms in several species.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Lactobacillaceae , Manganeso/farmacología , Bacterias , Zinc/farmacología , Hierro/farmacología
10.
Anal Chem ; 94(22): 7901-7908, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35612963

RESUMEN

Polymeric nanocarriers (PNCs) are versatile drug delivery vehicles capable of delivering a variety of therapeutics. Quantitatively monitoring their uptake in biological systems is essential for realizing their potential as next-generation delivery systems; however, existing quantification strategies are limited due to the challenges of detecting polymeric materials in complex biological samples. Here, we describe a metal-coded mass tagging approach that enables the multiplexed quantification of the PNC uptake in cells using mass spectrometry (MS). In this approach, PNCs are conjugated with ligands that bind strongly to lanthanide ions, allowing the PNCs to be sensitively quantitated by inductively coupled plasma-MS. The metal-coded tags have little effect on the properties or toxicity of the PNCs, making them biocompatible. We demonstrate that the conjugation of different metals to the PNCs enables the multiplexed analysis of cellular uptake of multiple distinct PNCs at the same time. This multiplexing capability should improve the design and optimization of PNCs by minimizing biological variability and reducing analysis time, effort, and cost.


Asunto(s)
Elementos de la Serie de los Lantanoides , Polímeros , Elementos de la Serie de los Lantanoides/química , Espectrometría de Masas/métodos , Polímeros/química , Análisis Espectral
11.
Nat Commun ; 13(1): 1428, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301328

RESUMEN

Utilizing the spin degree of freedom of photoexcitations in hybrid organic inorganic perovskites for quantum information science applications has been recently proposed and explored. However, it is still unclear whether the stable photoexcitations in these compounds correspond to excitons, free/trapped electron-hole pairs, or charged exciton complexes such as trions. Here we investigate quantum beating oscillations in the picosecond time-resolved circularly polarized photoinduced reflection of single crystal methyl-ammonium tri-iodine perovskite (MAPbI3) measured at cryogenic temperatures. We observe two quantum beating oscillations (fast and slow) whose frequencies increase linearly with B with slopes that depend on the crystal orientation with respect to the applied magnetic field. We assign the quantum beatings to positive and negative trions whose Landé g-factors are determined by those of the electron and hole, respectively, or by the carriers left behind after trion recombination. These are [Formula: see text] = 2.52 and [Formula: see text]= 2.63 for electrons, whereas [Formula: see text]= 0.28 and [Formula: see text]= 0.57 for holes. The obtained g-values are in excellent agreement with an 8-band K.P calculation for orthorhombic MAPbI3. Using the technique of resonant spin amplification of the quantum beatings we measure a relatively long spin coherence time of ~ 11 (6) nanoseconds for electrons (holes) at 4 K.

12.
Microbiol Spectr ; 10(1): e0100621, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080431

RESUMEN

Lactobacillus is a genus of Gram-positive bacteria and comprises a major part of the lactic acid bacteria group that converts sugars to lactic acid. Lactobacillus species found in the gut microbiota are considered beneficial to human health and commonly used in probiotic formulations, but their molecular functions remain poorly defined. Microbes require metal ions for growth and function and must acquire them from the surrounding environment. Therefore, lactobacilli need to compete with other gut microbes for these nutrients, although their metal requirements are not well-understood. Indeed, the abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like zinc, manganese, and iron, but few studies have investigated the role of metals, especially zinc, in the physiology and metabolism of Lactobacillus species. Here, we investigated metal uptake by quantifying total cellular metal contents and compared how transition metals affect the growth of two distinct Lactobacillus species, Lactobacillus plantarum ATCC 14917 and Lactobacillus acidophilus ATCC 4356. When grown in rich or metal-limited medium, both species took up more manganese, zinc, and iron compared with other transition metals measured. Distinct zinc-, manganese- and iron-dependent patterns were observed in the growth kinetics for these species and while certain levels of each metal promoted the growth kinetics of both Lactobacillus species, the effects depend significantly on the culture medium and growth conditions. IMPORTANCE The gastrointestinal tract contains trillions of microorganisms, which are central to human health. Lactobacilli are considered beneficial microbiota members and are often used in probiotics, but their molecular functions, and especially those which are metal-dependent, remain poorly defined. Abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like manganese, zinc, and iron, but results are complex, sometimes contradictory, and poorly predictable. There is a significant need to understand how host diet and metabolism will affect the microbiota, given that changes in microbiota composition are linked with disease and infection. The significance of our research is in gaining insight to how metals distinctly affect individual Lactobacillus species, which could lead to novel therapeutics and improved medical treatment. Growth kinetics and quantification of metal contents highlights how distinct species can respond differently to varied metal availability and provide a foundation for future molecular and mechanistic studies.


Asunto(s)
Hierro/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Manganeso/metabolismo , Zinc/metabolismo , Cinética , Lactobacillus acidophilus/química , Lactobacillus plantarum/química
13.
Lancet Public Health ; 7(1): e86-e92, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906331

RESUMEN

The COVID-19 pandemic is unprecedented. The pandemic not only induced a public health crisis, but has led to severe economic, social, and educational crises. Across economies and societies, the distributional consequences of the pandemic have been uneven. Among groups living in vulnerable conditions, the pandemic substantially magnified the inequality gaps, with possible negative implications for these individuals' long-term physical, socioeconomic, and mental wellbeing. This Viewpoint proposes priority, programmatic, and policy recommendations that governments, resource partners, and relevant stakeholders should consider in formulating medium-term to long-term strategies for preventing the spread of COVID-19, addressing the virus's impacts, and decreasing health inequalities. The world is at a never more crucial moment, requiring collaboration and cooperation from all sectors to mitigate the inequality gaps and improve people's health and wellbeing with universal health coverage and social protection, in addition to implementation of the health in all policies approach.


Asunto(s)
COVID-19/prevención & control , Inequidades en Salud , Política Pública , Cobertura Universal del Seguro de Salud , Poblaciones Vulnerables/psicología , Salud Global , Humanos , Salud Pública
14.
Nanoscale ; 13(26): 11568-11575, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34190280

RESUMEN

Understanding the molecular rules behind the dynamics of supramolecular assemblies is fundamentally important for the rational design of responsive assemblies with tunable properties. Herein, we report that the dynamics of temperature-sensitive supramolecular assemblies is not only affected by the dehydration of oligoethylene glycol (OEG) motifs, but also by the thermally-promoted molecular motions. These counteracting features set up a dynamics transition point (DTP) that can be modulated with subtle variations in a small hydrophobic patch on the hydrophilic face of the amphiphilic assembly. Understanding the structural factors that control the dynamics of the assemblies leads to rational design of enzyme-responsive assemblies with tunable temperature responsive profiles.


Asunto(s)
Temperatura , Interacciones Hidrofóbicas e Hidrofílicas
15.
Nature ; 587(7835): 594-599, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33239799

RESUMEN

The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission1, optoelectronics2,3, photon frequency conversion4,5 and photocatalysis6,7. Molecular triplet excitons (bound electron-hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels8. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin-orbit coupling9-11 or tuning of the singlet-triplet energy splitting12,13 via molecular design. Both these methods place constraints on the range of properties that can be modified and the molecular structures that can be used. Here we demonstrate that it is possible to control triplet dynamics by coupling organic molecules to lanthanide-doped inorganic insulating nanoparticles. This allows the classically forbidden transitions from the ground-state singlet to excited-state triplets to gain oscillator strength, enabling triplets to be directly generated on molecules via photon absorption. Photogenerated singlet excitons can be converted to triplet excitons on sub-10-picosecond timescales with unity efficiency by intersystem crossing. Triplet exciton states of the molecules can undergo energy transfer to the lanthanide ions with unity efficiency, which allows us to achieve luminescent harvesting of the dark triplet excitons. Furthermore, we demonstrate that the triplet excitons generated in the lanthanide nanoparticle-molecule hybrid systems by near-infrared photoexcitation can undergo efficient upconversion via a lanthanide-triplet excitation fusion process: this process enables endothermic upconversion and allows efficient upconversion from near-infrared to visible frequencies in the solid state. These results provide a new way to control triplet excitons, which is essential for many fields of optoelectronic and biomedical research.

16.
J Chem Phys ; 152(4): 044714, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32007081

RESUMEN

We have studied the magneto-electroluminescence (MEL) response in light emitting diodes based on 2D-(PEA)2PbI4 and 3D-MAPbI3 hybrid organic-inorganic perovskites at cryogenic temperatures. We found that the MEL is negative, i.e., the EL decreases with the applied field strength, B. In addition, the MEL(B) response has a Lorentzian line shape whose width depends on the perovskite used. We interpret the MEL(B) response using the "Δg mechanism" in which the spin of the injected electron-hole (e-h) pairs oscillates between singlet and triplet configurations due to different precession frequencies of the electron and hole constituents that originate from the difference, Δg, in the electron and hole gyromagnetic constants, g. In this model, the MEL(B) linewidth is inversely proportional to the spin lifetime and Δg. The model used is validated by directly measuring the spin lifetime of photogenerated e-h pairs using the circularly polarized pump-probe transmission technique with 100 fs resolution.

17.
Nat Commun ; 11(1): 323, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949152

RESUMEN

The two-dimensional (2D) Ruddlesden-Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic band structure. Upon breaking the inversion symmetry, a spin splitting ('Rashba splitting') occurs in the electronic bands. We have studied the spin splitting in 2D-PEPI single crystals using the circular photogalvanic effect (CPGE). We confirm the existence of Rashba splitting at the electronic band extrema of 35±10 meV, and identify the main inversion symmetry breaking direction perpendicular to the MQW planes. The CPGE action spectrum above the bandgap reveals spin-polarized photocurrent generated by ultrafast relaxation of excited photocarriers separated in momentum space. Whereas the helicity dependent photocurrent with below-gap excitation is due to spin-galvanic effect of the ionized spin-polarized excitons, where spin polarization occurs in the spin-split bands due to asymmetric spin-flip.

18.
J Org Chem ; 83(21): 12951-12964, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30200759

RESUMEN

The α-alkylation of ketones is a fundamental synthetic transformation. The development of asymmetric variants of this reaction is important given that numerous natural products, drugs, and related compounds exist as α-functionalized ketones or derivatives thereof. We previously reported our preliminary studies on the development of a new enantioselective ketone α-alkylation procedure using N-amino cyclic carbamate (ACC) auxiliaries. In comparison to other auxiliary-based methods, ACC alkylation offers a number of advantages and is both highly enantioselective and high yielding. Herein, we provide a full account of our studies on the enantioselective ACC ketone α-alkylation method.

19.
J Phys Chem Lett ; 9(16): 4544-4549, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30052444

RESUMEN

We report transient photoinduced absorption (t-PA) and magnetic field ( B)-dependent t-PA (t-MPA( B)) in a pristine low band gap π-conjugated copolymer composed of donor and acceptor moieties, namely, the poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thi-eno[3,4- b]thiophenediyl]]) (or PTB7) used in photovoltaic applications. Unlike traditional π-conjugated polymers in which the primary photoexcitations are singlet excitons (SE), in pristine PTB7 we find at short times coexistence of two primary photoexcitation species, namely, SE and triplet-triplet (TT) pair. Both species are photogenerated directly from the ground state and are spin-correlated. Although the TT pair decomposes into two separate triplet excitons (TEs) in ∼100 ps, the separated TE spins are still entangled up to ∼6 µs. At longer times, the t-MPA( B) response of the surviving TEs shows transient narrowing effect, which is attributed to a distribution of the TE size.

20.
Carbohydr Polym ; 190: 121-128, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29628229

RESUMEN

Polysaccharide-based hydrogels were prepared by the diffusion of various divalent cations (X2+) into the polygalacturonate (polyGal) solution through a dialysis membrane. The diffusion of various divalent cations (Mg2+, Ca2+, Zn2+ and Ba2+) was investigated. The polyGal gel growth was studied as a function of the initial cation concentration by both viscoelastic and turbidity measurements. We have demonstrated for the first time that the determination of the spatiotemporal variation of turbidity during the gelation process allowed to study the gel front migration. For Ca-polyGal, Zn-polyGal and Ba-polyGal, the gel front migration was characterized by the presence of a peak at the sol/gel interface. This peak was not observed in the case of Mg-polyGal where the gel was not formed. The apparent diffusion coefficient of the gel front (Dapp) which was calculated from the evolution of this peak increased when the initial cation concentration was increased. Moreover, we have suggested a gelation mechanism based on the presence of a threshold molar ratio R* (=[X2+]/[Galacturonic unit]) in which some point-like crosslinks are precursors of the formation of dimers and multimers inducing the contraction of the gel and thus the formation of the gel front.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...