Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(20): 202501, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38039485

RESUMEN

The changes in mean-squared charge radii of neutron-deficient gold nuclei have been determined using the in-source, resonance-ionization laser spectroscopy technique, at the ISOLDE facility (CERN). From these new data, nuclear deformations are inferred, revealing a competition between deformed and spherical configurations. The isotopes ^{180,181,182}Au are observed to possess well-deformed ground states and, when moving to lighter masses, a sudden transition to near-spherical shapes is seen in the extremely neutron-deficient nuclides, ^{176,177,179}Au. A case of shape coexistence and shape staggering is identified in ^{178}Au which has a ground and isomeric state with different deformations. These new data reveal a pattern in ground-state deformation unique to the gold isotopes, whereby, when moving from the heavy to light masses, a plateau of well-deformed isotopes exists around the neutron midshell, flanked by near-spherical shapes in the heavier and lighter isotopes-a trend hitherto unseen elsewhere in the nuclear chart. The experimental charge radii are compared to those from Hartree-Fock-Bogoliubov calculations using the D1M Gogny interaction and configuration mixing between states of different deformation. The calculations are constrained by the known spins, parities, and magnetic moments of the ground states in gold nuclei and show a good agreement with the experimental results.

2.
Phys Rev Lett ; 131(2): 022501, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505957

RESUMEN

The ß decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to ß, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant ß-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their ß decays selectively populate only a few isolated neutron unbound states in ^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark ß-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the ß decay of neutron-rich nuclei southeast of ^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key ß decays in the rapid-neutron capture (r-) process.

3.
Phys Rev Lett ; 127(19): 192501, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34797155

RESUMEN

The changes in the mean-square charge radius (relative to ^{209}Bi), magnetic dipole, and electric quadrupole moments of ^{187,188,189,191}Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in ^{187,188,189}Bi^{g}, manifested by a sharp radius increase for the ground state of ^{188}Bi relative to the neighboring ^{187,189}Bi^{g}. A large isomer shift was also observed for ^{188}Bi^{m}. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were identified by the blocked quasiparticle configuration compatible with the observed spin, parity, and magnetic moment.

4.
Phys Rev Lett ; 126(3): 032502, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33543945

RESUMEN

The mean-square charge radii of ^{207,208}Hg (Z=80, N=127, 128) have been studied for the first time and those of ^{202,203,206}Hg (N=122, 123, 126) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic kink in the charge radii at the N=126 neutron shell closure has been revealed, providing the first information on its behavior below the Z=82 proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and nonrelativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is demonstrated that both the kink at N=126 and the odd-even staggering (OES) in its vicinity can be described predominately at the mean-field level and that pairing does not need to play a crucial role in their origin. A new OES mechanism is suggested, related to the staggering in the occupation of the different neutron orbitals in odd- and even-A nuclei, facilitated by particle-vibration coupling for odd-A nuclei.

5.
Phys Rev Lett ; 125(19): 192501, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216605

RESUMEN

The ß decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{ß} window, only three negative parity states are populated directly in the ß decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden ß decays, essential for the understanding of the nucleosynthesis of heavy nuclei in the rapid neutron capture process. Furthermore, the observation of the parity changing 0^{+}→0^{-}ß decay where the daughter state is core excited is unique, and can provide information on mesonic corrections of effective operators.

6.
Phys Rev Lett ; 121(14): 142701, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30339438

RESUMEN

The ^{12}C(α,γ)^{16}O reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ_{11}, of the bound 1^{-} level in ^{16}O is particularly important to determine the cross section. The magnitude of γ_{11} is determined via sub-Coulomb α-transfer reactions or the ß-delayed α decay of ^{16}N, but the latter approach is presently hampered by the lack of sufficiently precise data on the ß-decay branching ratios. Here we report improved branching ratios for the bound 1^{-} level [b_{ß,11}=(5.02±0.10)×10^{-2}] and for ß-delayed α emission [b_{ßα}=(1.59±0.06)×10^{-5}]. Our value for b_{ßα} is 33% larger than previously held, leading to a substantial increase in γ_{11}. Our revised value for γ_{11} is in good agreement with the value obtained in α-transfer studies and the weighted average of the two gives a robust and precise determination of γ_{11}, which provides significantly improved constraints on the ^{12}C(α,γ) cross section in the energy range relevant to hydrostatic He burning.

7.
Phys Rev Lett ; 120(26): 263003, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004781

RESUMEN

One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05 eV. This work provides a stringent benchmark for state-of-the-art many-body atomic modeling that considers relativistic and quantum electrodynamic effects and paves the way for high-precision measurements of atomic properties of elements only available from heavy-ion accelerator facilities.

8.
Phys Rev Lett ; 120(23): 232503, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29932712

RESUMEN

Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton density distribution in ^{252,254}No isotopes. Finally, the hyperfine splitting of ^{253}No was evaluated, enabling a complementary measure of its (quadrupole) deformation, as well as an insight into the neutron single-particle wave function via the nuclear spin and magnetic moment.

9.
Phys Rev Lett ; 121(25): 252501, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30608829

RESUMEN

The first 2^{+} and 3^{-} states of the doubly magic nucleus ^{132}Sn are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The ^{132}Sn ions are accelerated to an energy of 5.49 MeV/nucleon and impinged on a ^{206}Pb target. Deexciting γ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions 0_{g.s.}^{+}→2_{1}^{+}, 0_{g.s.}^{+}→3_{1}^{-}, and 2_{1}^{+}→3_{1}^{-} in ^{132}Sn. The results on these states provide crucial information on cross-shell configurations which are determined within large-scale shell-model and Monte Carlo shell-model calculations as well as from random-phase approximation and relativistic random-phase approximation. The locally enhanced B(E2;0_{g.s.}^{+}→2_{1}^{+}) strength is consistent with the microscopic description of the structure of the respective states within all theoretical approaches. The presented results of experiment and theory can be considered to be the first direct verification of the sphericity and double magicity of ^{132}Sn.

10.
Nat Commun ; 8: 14520, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28224987

RESUMEN

Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency.

11.
Phys Rev Lett ; 112(16): 162701, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24815644

RESUMEN

Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.

12.
Rev Sci Instrum ; 85(2): 02B915, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24593620

RESUMEN

The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

13.
Nature ; 497(7448): 199-204, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23657348

RESUMEN

There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are 'octupole deformed', that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on (220)Rn and (224)Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental studies of atomic electric-dipole moments that might reveal extensions to the standard model.

14.
Nat Commun ; 4: 1835, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673620

RESUMEN

The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

15.
Phys Rev Lett ; 110(24): 242502, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25165917

RESUMEN

In recent experiments at the velocity filter Separator for Heavy Ion reaction Products (SHIP) (GSI, Darmstadt), an extended and improved set of α-decay data for more than 20 of the most neutron-deficient isotopes in the region from lead to thorium was obtained. The combined analysis of this newly available α-decay data, of which the (186)Po decay is reported here, allowed us for the first time to clearly show that crossing the Z = 82 shell to higher proton numbers strongly accelerates the α decay. From the experimental data, the α-particle formation probabilities are deduced following the Universal Decay Law approach. The formation probabilities are discussed in the framework of the pairing force acting among the protons and the neutrons forming the α particle. A striking resemblance between the phenomenological pairing gap deduced from experimental binding energies and the formation probabilities is noted. These findings support the conjecture that both the N = 126 and Z = 82 shell closures strongly influence the α-formation probability.


Asunto(s)
Partículas alfa , Polonio/química , Neutrones , Física Nuclear
16.
Phys Rev Lett ; 108(16): 162502, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22680713

RESUMEN

A measurement of the final state distribution of the (8)B ß decay, obtained by implanting a (8)B beam in a double-sided silicon strip detector, is reported here. The present spectrum is consistent with a recent independent precise measurement performed by our collaboration at the IGISOL facility, Jyväskylä [O. S. Kirsebom et al., Phys. Rev. C 83, 065802 (2011)]. It shows discrepancies with previously measured spectra, leading to differences in the derived neutrino spectrum. Thanks to a low detection threshold, the neutrino spectrum is for the first time directly extracted from the measured final state distribution, thus avoiding the uncertainties related to the extrapolation of R-matrix fits. Combined with the IGISOL data, this leads to an improvement of the overall errors and the extension of the neutrino spectrum at high energy. The new unperturbed neutrino spectrum represents a benchmark for future measurements of the solar neutrino flux as a function of energy.

17.
Phys Rev Lett ; 108(6): 062701, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22401060

RESUMEN

The neutron-rich nuclei 94,96Kr were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2(+) states and their absolute E2 transition strengths to the ground state are determined and discussed in the context of the E(2(1)(+)) and B(E2;2(1)(+)→0(1)(+)) systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed. This experimental result is supported by a new proton-neutron interacting boson model calculation based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional.

18.
Phys Rev Lett ; 106(5): 052503, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21405388

RESUMEN

In-source resonant ionization laser spectroscopy of the even-A polonium isotopes (192-210,216,218)Po has been performed using the 6p(3)7s (5)S(2) to 6p(3)7p (5)P(2) (λ=843.38 nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in (200-210)Po with a previous data set allows us to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by beyond mean field calculations.

19.
Phys Rev Lett ; 105(25): 252502, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21231583

RESUMEN

A very exotic process of ß-delayed fission of 180Tl is studied in detail by using resonant laser ionization with subsequent mass separation at ISOLDE (CERN). In contrast to common expectations, the fission-fragment mass distribution of the post-ß-decay daughter nucleus 180Hg (N/Z=1.25) is asymmetric. This asymmetry is more surprising since a mass-symmetric split of this extremely neutron-deficient nucleus would lead to two 90Zr fragments, with magic N=50 and semimagic Z=40. This is a new type of asymmetric fission, not caused by large shell effects related to fragment magic proton and neutron numbers, as observed in the actinide region. The newly measured branching ratio for ß-delayed fission of 180Tl is 3.6(7) × 10(-3)%, approximately 2 orders of magnitude larger than in an earlier study.

20.
Phys Rev Lett ; 105(25): 252501, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21231582

RESUMEN

The "island of inversion" nucleus 32 Mg has been studied by a (t, p) two neutron transfer reaction in inverse kinematics at REX-ISOLDE. The shape coexistent excited 0+ state in 32 Mg has been identified by the characteristic angular distribution of the protons of the Δ L=0 transfer. The excitation energy of 1058 keV is much lower than predicted by any theoretical model. The low γ-ray intensity observed for the decay of this 0+ state indicates a lifetime of more than 10 ns. Deduced spectroscopic amplitudes are compared with occupation numbers from shell-model calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...