Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(49): eabj8156, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860542

RESUMEN

The Golgi apparatus plays a central role in trafficking cargoes such as proteins and lipids. Defects in the Golgi apparatus lead to various diseases, but its role in organismal longevity is largely unknown. Using a quantitative proteomic approach, we found that a Golgi protein, MON-2, was up-regulated in long-lived Caenorhabditis elegans mutants with mitochondrial respiration defects and was required for their longevity. Similarly, we showed that DOP1/PAD-1, which acts with MON-2 to traffic macromolecules between the Golgi and endosome, contributed to the longevity of respiration mutants. Furthermore, we demonstrated that MON-2 was required for up-regulation of autophagy, a longevity-associated recycling process, by activating the Atg8 ortholog GABARAP/LGG-1 in C. elegans. Consistently, we showed that mammalian MON2 activated GABARAPL2 through physical interaction, which increased autophagic flux in mammalian cells. Thus, the evolutionarily conserved role of MON2 in trafficking between the Golgi and endosome is an integral part of autophagy-mediated longevity.

2.
Sci Adv ; 6(27)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32937443

RESUMEN

Vaccinia virus-related kinase (VRK) is an evolutionarily conserved nuclear protein kinase. VRK-1, the single Caenorhabditis elegans VRK ortholog, functions in cell division and germline proliferation. However, the role of VRK-1 in postmitotic cells and adult life span remains unknown. Here, we show that VRK-1 increases organismal longevity by activating the cellular energy sensor, AMP-activated protein kinase (AMPK), via direct phosphorylation. We found that overexpression of vrk-1 in the soma of adult C. elegans increased life span and, conversely, inhibition of vrk-1 decreased life span. In addition, vrk-1 was required for longevity conferred by mutations that inhibit C. elegans mitochondrial respiration, which requires AMPK. VRK-1 directly phosphorylated and up-regulated AMPK in both C. elegans and cultured human cells. Thus, our data show that the somatic nuclear kinase, VRK-1, promotes longevity through AMPK activation, and this function appears to be conserved between C. elegans and humans.

3.
Development ; 147(9)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198156

RESUMEN

Murine muscle stem cells (MuSCs) experience a transition from quiescence to activation that is required for regeneration, but it remains unknown if the trajectory and dynamics of activation change with age. Here, we use time-lapse imaging and single cell RNA-seq to measure activation trajectories and rates in young and aged MuSCs. We find that the activation trajectory is conserved in aged cells, and we develop effective machine-learning classifiers for cell age. Using cell-behavior analysis and RNA velocity, we find that activation kinetics are delayed in aged MuSCs, suggesting that changes in stem cell dynamics may contribute to impaired stem cell function with age. Intriguingly, we also find that stem cell activation appears to be a random walk-like process, with frequent reversals, rather than a continuous linear progression. These results support a view of the aged stem cell phenotype as a combination of differences in the location of stable cell states and differences in transition rates between them.


Asunto(s)
Senescencia Celular/fisiología , Músculo Esquelético/metabolismo , Células Madre/metabolismo , Animales , Células Cultivadas , Inmunohistoquímica , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , RNA-Seq , Células Madre/citología , Imagen de Lapso de Tiempo
4.
Curr Top Dev Biol ; 126: 299-322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29305003

RESUMEN

Satellite cells (SCs) are a population of muscle-resident stem cells that are essential for efficient tissue repair. SCs reside in a relatively quiescent state during normal tissue turnover, but are activated in response to injury through the microenvironment and cell-intrinsic signals. During aging, SC dysfunction is a major contributor to the decline in regenerative potential of muscle tissue. Recent studies have demonstrated that both cell-intrinsic and cell-extrinsic factors are deregulated during aging. Interventions that reverse age-associated changes in SCs or the niche have shown to partially rejuvenate the regenerative capacity of aged muscle SCs. In this review, we discuss recent advances in SC biology as it pertains to the deleterious effects of aging. A better understanding of how age-dependent changes in the SC and its environment niche impact muscle regeneration could lead to interventions to ameliorate the effects of aging in humans.


Asunto(s)
Envejecimiento/fisiología , Músculo Esquelético/fisiología , Células Satélite del Músculo Esquelético/fisiología , Nicho de Células Madre/fisiología , Animales , Autofagia/fisiología , Proliferación Celular/fisiología , Humanos , Modelos Biológicos , Músculo Esquelético/citología , Regeneración/fisiología
5.
EMBO J ; 36(8): 1046-1065, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28283579

RESUMEN

Mitochondria play key roles in cellular immunity. How mitochondria contribute to organismal immunity remains poorly understood. Here, we show that HSP-60/HSPD1, a major mitochondrial chaperone, boosts anti-bacterial immunity through the up-regulation of p38 MAP kinase signaling. We first identify 16 evolutionarily conserved mitochondrial components that affect the immunity of Caenorhabditis elegans against pathogenic Pseudomonas aeruginosa (PA14). Among them, the mitochondrial chaperone HSP-60 is necessary and sufficient to increase resistance to PA14. We show that HSP-60 in the intestine and neurons is crucial for the resistance to PA14. We then find that p38 MAP kinase signaling, an evolutionarily conserved anti-bacterial immune pathway, is down-regulated by genetic inhibition of hsp-60, and up-regulated by increased expression of hsp-60 Overexpression of HSPD1, the mammalian ortholog of hsp-60, increases p38 MAP kinase activity in human cells, suggesting an evolutionarily conserved mechanism. Further, cytosol-localized HSP-60 physically binds and stabilizes SEK-1/MAP kinase kinase 3, which in turn up-regulates p38 MAP kinase and increases immunity. Our study suggests that mitochondrial chaperones protect host eukaryotes from pathogenic bacteria by up-regulating cytosolic p38 MAPK signaling.


Asunto(s)
Caenorhabditis elegans/inmunología , Chaperonina 60/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Proteínas Mitocondriales/inmunología , Pseudomonas aeruginosa/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Chaperonina 60/genética , Humanos , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/inmunología , Sistema de Señalización de MAP Quinasas/genética , Proteínas Mitocondriales/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
6.
Aging (Albany NY) ; 7(6): 362-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26115541

RESUMEN

The second International Symposium on the Genetics of Aging and Life History was held at the campus of Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea, from May 14 to 16, 2014. Many leading scientists in the field of aging research from all over the world contributed to the symposium by attending and presenting their recent work and thoughts. The aim of the symposium was to stimulate international collaborations and interactions among scientists who work on the biology of aging. In the symposium, the most recent and exciting work on aging research was presented, covering a wide range of topics, including the genetics of aging, age-associated diseases, and cellular senescence. The work was conducted in various organisms, includingC. elegans, mice, plants, and humans. Topics covered in the symposium stimulated discussion of novel directions for future research on aging. The meeting ended with a commitment for the third International Symposium on the Genetics of Aging and Life History, which will be held in 2016.


Asunto(s)
Envejecimiento/fisiología , Anciano , Anciano de 80 o más Años , Animales , Investigación Biomédica , Senescencia Celular/fisiología , Geriatría , Humanos , Internacionalidad
7.
Sci Rep ; 5: 9564, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25955271

RESUMEN

The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments.


Asunto(s)
Conducta Animal , Caenorhabditis elegans/genética , Ambiente , Animales , Cabeza , Locomoción , Mecanotransducción Celular , Movimiento , Mutación/genética , Programas Informáticos
8.
Proc Natl Acad Sci U S A ; 111(42): E4458-67, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288734

RESUMEN

Mild inhibition of mitochondrial respiration extends the lifespan of many species. In Caenorhabditis elegans, reactive oxygen species (ROS) promote longevity by activating hypoxia-inducible factor 1 (HIF-1) in response to reduced mitochondrial respiration. However, the physiological role and mechanism of ROS-induced longevity are poorly understood. Here, we show that a modest increase in ROS increases the immunity and lifespan of C. elegans through feedback regulation by HIF-1 and AMP-activated protein kinase (AMPK). We found that activation of AMPK as well as HIF-1 mediates the longevity response to ROS. We further showed that AMPK reduces internal levels of ROS, whereas HIF-1 amplifies the levels of internal ROS under conditions that increase ROS. Moreover, mitochondrial ROS increase resistance to various pathogenic bacteria, suggesting a possible association between immunity and long lifespan. Thus, AMPK and HIF-1 may control immunity and longevity tightly by acting as feedback regulators of ROS.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Retroalimentación Fisiológica , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Envejecimiento , Animales , Caenorhabditis elegans/inmunología , Respiración de la Célula , Homeostasis , Hierro/química , Longevidad/fisiología , Mitocondrias/metabolismo , Mutación , Paraquat/química , Fosforilación
9.
Curr Genomics ; 13(7): 519-32, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23633912

RESUMEN

Mitochondria are essential for various biological processes including cellular energy production. The oxidative stress theory of aging proposes that mitochondria play key roles in aging by generating reactive oxygen species (ROS), which indiscriminately damage macromolecules and lead to an age-dependent decline in biological function. However, recent studies show that increased levels of ROS or inhibition of mitochondrial function can actually delay aging and increase lifespan. The aim of this review is to summarize recent findings regarding the role of mitochondria in organismal aging processes. We will discuss how mitochondria contribute to evolutionarily conserved longevity pathways, including mild inhibition of respiration, dietary restriction, and target of rapamycin (TOR) signaling.

10.
Aging (Albany NY) ; 3(3): 304-10, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21389351

RESUMEN

A mild reduction in mitochondrial respiration extends the life span of many species, including C. elegans. We recently showed that hypoxia-inducible factor 1 (HIF-1) is required for the acquisition of a long life span by mutants with reduced respiration in C. elegans. We suggested that increased levels of reactive oxygen species (ROS) produced in the respiration mutants increase HIF-1 activity and lead to this longevity. In this research perspective, we discuss our findings and recent advances regarding the roles of ROS and HIF-1 in aging, focusing on the longevity caused by reduced respiration.


Asunto(s)
Factor 1 Inducible por Hipoxia/metabolismo , Longevidad/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Respiración de la Célula , Senescencia Celular/genética , Senescencia Celular/fisiología , Humanos , Factor 1 Inducible por Hipoxia/genética , Longevidad/genética , Ratones , Modelos Biológicos , Mutación , Respuesta de Proteína Desplegada
11.
Curr Biol ; 20(23): 2131-6, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21093262

RESUMEN

A mild inhibition of mitochondrial respiration extends the life span of many organisms, including yeast, worms, flies, and mice, but the underlying mechanism is unknown. One environmental condition that reduces rates of respiration is hypoxia (low oxygen). Thus, it is possible that mechanisms that sense oxygen play a role in the longevity response to reduced respiration. The hypoxia-inducible factor HIF-1 is a highly conserved transcription factor that activates genes that promote survival during hypoxia. In this study, we show that inhibition of respiration in C. elegans can promote longevity by activating HIF-1. Through genome-wide screening, we found that RNA interference (RNAi) knockdown of many genes encoding respiratory-chain components induced hif-1-dependent transcription. Moreover, HIF-1 was required for the extended life spans of clk-1 and isp-1 mutants, which have reduced rates of respiration. Inhibiting respiration appears to activate HIF-1 by elevating the level of reactive oxygen species (ROS). We found that ROS are increased in respiration mutants and that mild increases in ROS can stimulate HIF-1 to activate gene expression and promote longevity. In this way, HIF-1 appears to link respiratory stress in the mitochondria to a nuclear transcriptional response that promotes longevity.


Asunto(s)
Caenorhabditis elegans/fisiología , Respiración de la Célula/fisiología , Factor 1 Inducible por Hipoxia/metabolismo , Longevidad/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Caenorhabditis elegans/citología , Factor 1 Inducible por Hipoxia/genética , Ratones , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...