Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37630000

RESUMEN

The effect of tempering temperature on the hydrogen embrittlement characteristics of SCM440 tempered martensitic steels was investigated in terms of their microstructure and hydrogen desorption behavior. The microstructures were characterized using scanning and transmission electron microscopy, as well as X-ray diffraction and electron backscattered diffraction analysis. Thermal desorption analysis (TDA) was performed to examine the amount and trapping behavior of hydrogen. The cementite morphology of the SCM440 tempered martensitic steels gradually changed from a long lamellar shape to a segmented short-rod shape with an increasing tempering temperature. A slow strain rate tensile test was conducted after electrochemical hydrogen charging to evaluate the hydrogen embrittlement resistance. The hydrogen embrittlement resistance of the SCM440 tempered martensitic steels increased with an increasing tempering temperature because of the decrease in the fraction of the low-angle grain boundaries and dislocation density. The low-angle grain boundaries and dislocations, which acted as reversible hydrogen trap sites, were critical factors in determining the hydrogen embrittlement resistance, and this was supported by the decreased diffusible hydrogen content as measured by TDA. Fine carbides formed in the steel tempered at a relatively higher temperature acted as irreversible hydrogen trap sites and contributed to improving the hydrogen embrittlement resistance. Our findings can suggest that the tempering temperature of SCM440 tempered martensitic steel plays an important role in determining its hydrogen embrittlement resistance.

2.
Microsc Microanal ; 19 Suppl 5: 77-82, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23920180

RESUMEN

Scale-bridging analysis on deformation behavior of high-nitrogen austenitic Fe-18Cr-10Mn-(0.39 and 0.69)N steels was performed by neutron diffraction, electron backscattered diffraction (EBSD), and transmission electron microscopy (TEM). Two important modes of deformation were identified depending on the nitrogen content: deformation twinning in the 0.69 N alloy and strain-induced martensitic transformation in the 0.39 N alloy. The phase fraction and deformation faulting probabilities were evaluated based on analyses of peak shift and asymmetry of neutron diffraction profiles. Semi in situ EBSD measurement was performed to investigate the orientation dependence of deformation microstructure and it showed that the variants of ε martensite as well as twin showed strong orientation dependence with respect to tensile axis. TEM observation showed that deformation twin with a {111} mathematical left angle bracket 112 mathematical right angle bracket crystallographic component was predominant in the 0.69 N alloy whereas two types of strain-induced martensites (ε and α' martensites) were observed in the 0.39 N alloy. It can be concluded that scale-bridging analysis using neutron diffraction, EBSD, and TEM can yield a comprehensive understanding of the deformation mechanism of nitrogen-alloyed austenitic steels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...