Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 19(45): e2303472, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37420329

RESUMEN

The severely insufficient operational lifetime of perovskite light-emitting diodes (LEDs) is incompatible with the rapidly increasing external quantum efficiency, even as it approaches the theoretical limit, thereby significantly impeding the commercialization of perovskite LEDs. In addition, Joule heating induces ion migration and surface defects, degrades the photoluminescence quantum yield and other optoelectronic properties of perovskite films, and induces the crystallization of charge transport layers with low glass transition temperatures, resulting in LED degradation under continuous operation. Here, a novel thermally crosslinked hole transport material, poly(FCA60 -co-BFCA20 -co-VFCA20 ) (poly-FBV), with temperature-dependent hole mobility is designed, which is advantageous for balancing the charge injection of the LEDs and limiting the generation of Joule heating. The optimised CsPbI3 perovskite nanocrystal LEDs with poly-FBV realise approximately a 2-fold external quantum efficiency increase over the LED with commercial hole transport layer poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), owing to the balanced carrier injection and suppressed exciton quenching. Moreover, because of the Joule heating control provided by the novel crosslinked hole transport material, the LED utilising crosslinked poly-FBV has a 150-fold longer operating lifetime (490 min) than that utilizing poly-TPD (3.3 min). The study opens a new avenue for the use of PNC LEDs in commercial semiconductor optoelectronic devices.

2.
ACS Sens ; 8(8): 3004-3013, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37487692

RESUMEN

Commercial hydrogen (H2) sensors operate at high temperatures, which increases power consumption and poses a safety risk owing to the flammable nature of H2. Here, a polymer-noble metal-metal oxide film is fabricated using the spin-coating and printing methods to realize a highly sensitive, low-voltage operation, wide-operating-concentration, and near-monoselective H2 sensor at room temperature. The H2 sensors with an optimized thickness of Pd nanoparticles and SnO2 showed an extremely high response of 16,623 with a response time of 6 s and a recovery time of 5 s at room temperature and 2% H2. At the same time, printed flexible sensors demonstrate excellent sensitivity, with a response of 2300 at 2% H2. The excellent sensing performance at room temperature is due to the optimal SnO2 thickness, corresponding to the Debye length and the oxygen and H2 spillover caused by the optimized coverage of the Pd catalyst. Furthermore, multistructures of WO3 and SnO2 films are used to fabricate a new type of dual-signal sensor, which demonstrated simultaneous conductance and transmittance, i.e., color change. This work provides an effective strategy to develop robust, flexible, transparent, and long-lasting H2 sensors through large-area printing processes based on polymer-metal-metal oxide nanostructures.


Asunto(s)
Colorimetría , Hidrógeno , Temperatura , Óxidos , Polímeros
3.
Nanomaterials (Basel) ; 13(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37446451

RESUMEN

We designed and synthesized a new indolocarbazole-based polymer, poly(N,N-diphenyl(5,11-dihexylindolo[3,2,1-jk]carbazol-2-yl)amine) (PICA), for solution-processed organic light-emitting diodes (OLEDs). The highest occupied and lowest unoccupied molecular orbital energy levels of this polymer, -5.25 and -2.46 eV, respectively, are suitable for hole transport from the anode to the emissive layer. PICA was photo-crosslinked by UV irradiation with ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate) (FPA) as the photoinitiator. Successful crosslinking was confirmed by a decreased intensity in the azide-stretching FT-IR peak and solvent test with toluene (a suitable solvent for PICA). The PICA film photo-crosslinked with 3 wt% FPA showed enhanced solvent resistance (90%) compared to the non-crosslinked neat PICA film (<20%). Moreover, OLED devices using PICA-based hole-transporting layers exhibited better device performance (EQE/LE/PE: 8.88%/12.97/8.12 in red devices, 10.84%/38.47 cd/A/25.06 lm/W in green devices) than those using poly-TPD:FPA. We demonstrated that the photo-crosslinked PICA can be applied as a hole-transporting layer in solution-processed OLEDs.

4.
Sci Rep ; 13(1): 9276, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286700

RESUMEN

A novel frictional drag reducing self-polishing copolymer (FDR-SPC) was first developed by the authors. The FDR-SPC is a special derivative of an SPC that was designed to achieve skin frictional drag reduction in turbulent water flow by releasing polyethylene glycol (PEG) into water through a hydrolysis reaction. Thus, the FDR-SPC coating acts as a continuous medium accommodating countless, molecular-level polymer injectors. However, direct evidence of such PEG release has not yet been demonstrated. Here, we report the results of in situ PEG concentration measurement based on the planar laser-induced fluorescence (PLIF) method. Polyethylene glycol methacrylate (PEGMA) was probed by the fluorescent functional material dansyl, and the fluorescence intensity from dansyl-PEG was then measured to quantify the concentration in the flow. The near-wall concentration of dansyl-PEG is observed to range from 1 to 2 ppm depending on the flow speed, which corroborates the existence of a drag reducing function for the FDR-SPC. In the concurrent measurement of skin friction, the present FDR-SPC specimen exhibited a skin friction reduction ratio of 9.49% at the freestream flow speed [Formula: see text]. In the comparative experiment of dansyl-PEGMA solution injection, the skin friction was found to decrease by 11.9%, which is in reasonable accordance with that for the FDR-SPC.

5.
ACS Appl Mater Interfaces ; 15(17): 21306-21313, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37079770

RESUMEN

Fused aromatic rings are widely employed in organic solar cell (OSC) materials due to their planarity and rigidity. Here, we designed and synthesized four two-dimensional non-fullerene acceptors, D6-4F, D6-4Cl, DTT-4F, and DTT-4Cl, based on two new fused planar ring structures of f-DTBDT-C6 and f-DTTBDT. Owing to the desirable phase separation formed in the blend films and the higher energy levels induced by the extra alkyl groups, PM6:D6-4F-based devices achieved a high VOC = 0.91 V with PCE = 11.10%, FF = 68.54%, and JSC = 17.75 mA/cm2. Because of the longer π-conjugation of the f-DTTBDT core with nine fused rings, DTT-4F and DTT-4Cl showed high molar extinction coefficients and broad absorption bands that enhanced the current density of OSCs. Finally, the PM6:DTT-4F-based devices achieved a JSC = 19.82 mA/cm2 with PCE = 9.68%, VOC = 0.83 V, and FF = 58.85%.

6.
Polymers (Basel) ; 14(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235911

RESUMEN

To improve the peel strength and holding time of polypropylene glycol (PPG)-based pressure-sensitive adhesives (PSAs), a semi-interpenetrating polymer network (semi-IPN) was prepared using acrylic polymers. In addition, to prevent air pollution due to volatile organic compound emissions and avoid the degradation of physical properties due to a residual solvent, the PPG-based semi-IPN PSAs were fabricated by an eco-friendly solvent-free method using an acrylic monomer instead of an organic solvent. PPG-based semi-IPN PSAs with different hard segment contents (2.9-17.2%) were synthesized; their holding time was found to depend on the hard segment contents. The peel strength was improved because of the formation of the semi-IPN structure. Moreover, the high degree of hard domain formation in the semi-IPN PSA, derived from the increase in the hard segment content using a chain extender, resulted in a holding time improvement. We believe that the as-prepared PSAs can be used in various applications that require high creep resistance.

7.
ACS Appl Mater Interfaces ; 14(34): 39098-39108, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35972221

RESUMEN

Fluorination of a conjugated polymer backbone is an effective strategy to control the microstructure and electronic structure of a conjugated polymer. Although fluorination has been widely reported to increase charge carrier mobility, its effect on the operational stability of electronic devices has not been extensively investigated. Here, the effect of fluorination of a conjugated polymer backbone on charge trapping and the operational stability of organic field-effect transistors is investigated. The results show that the device based on a fluorinated conjugated polymer exhibits relatively poor operational stability despite its greater charge carrier mobility compared with that in the device based on its nonfluorinated polymer counterpart. Experimental results reveal that the low stability originates from the greater degree of shallow trapping of charge carriers within the fluorinated polymer thin film and that the shallow trapping is closely related to the presence of minority charge carriers. A mechanism of charge trapping is proposed.

8.
ACS Appl Mater Interfaces ; 14(30): 34901-34908, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35867806

RESUMEN

Compared to Ir(III) complexes with octahedral geometries, Pt(II) complexes with square planar geometries show superior optical properties because their flat shapes lead to an orientation that enhances the outcoupling of organic light-emitting diodes (OLEDs). However, the flat shapes of Pt(II) complexes typically induce a bathochromic shift, limiting their application in high-performance deep-blue phosphorescent OLEDs with high color purity. In this study, bulky trimethylsilyl (TMS)-substituted blue phosphorescent Pt(II) complex (PtON7-TMS) is successfully synthesized to improve color purity. The TMS substituent containing Si atom effectively suppresses intermolecular interaction and aggregation even when the complex concentration in the film state is higher than 30 wt %. As a result, the PtON7-TMS-based OLEDs exhibit a maximum external quantum efficiency of 21.4%, along with a pure-blue color of CIE (0.14, 0.09) at 20 wt % doping concentration and a full-width at half maximum of 30 nm. The pure blue color is maintained at a higher doping concentration (>30 wt %).

9.
Inorg Chem ; 61(13): 5178-5183, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35320671

RESUMEN

Red and near-infrared (NIR) phosphorescent double-decker dinuclear Pt(II) complexes were synthesized, and their structural and spectroscopic properties were characterized. The Pt(II) complexes, which are composed of achiral ligands and are themselves chiral, were shown to exist as racemic mixtures using single-crystal X-ray crystallography. The Pt(II) complexes have different intramolecular Pt-Pt distances that are governed by the electronic characteristics of the component C^N ligands. Specifically, strengthening of π-back-donation between Pt(II) and N atom of the C^N ligand leads to shortening of the Pt-Pt distance. The results of both experimental and computational investigations show that the Pt-Pt distances in the dinuclear Pt(II) complexes significantly influence the band gap energies and corresponding emission wavelengths. Consequently, the uncovered C^N ligand based method to finely control intramolecular Pt-Pt distances in dinuclear Pt(II) complexes can be utilized as a guideline for the design of the double-decker dinuclear Pt(II) complexes with red and NIR tuned phosphorescence.

10.
ACS Appl Mater Interfaces ; 13(48): 57693-57702, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34813270

RESUMEN

Ladder-type fused aromatic systems are important core structures of small molecule acceptors for organic solar cells (OSCs). In this study, a new ladder-type donor building block, based on the benzo[1,2-b:4,5-b']dithiophene (BDT) unit where the 3,7 positions of the BDT thiophene rings and the 3' position of the thiophene rings of the vertical BDT were fused to construct a seven-ring core structure named f-DTBDT, was investigated. In the f-DTBDT structure, the fusion of the BDT core and the thiophene rings at the 4,8 positions of BDT constrains all of the aromatic rings in a coplanar structure. The newly designed f-DTBDT was successfully employed as a core donor building block and conjugated with three electron-withdrawing acceptors (2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile (2HIC), 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2FIC), and 2-(5,6-dichloro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2ClIC)) as acceptor-donor-acceptor (A-D-A)-type acceptor materials for OSCs. Characterization results showed that the three synthesized A-D-A acceptors of DTBDT-IC, DTBDT-4F, and DTBDT-4Cl have high absorption behavior in the vis-NIR region as result of an intramolecular charge transfer interaction engendered by f-DTBDT and the ending group. The absorption regions of the acceptors were complementary with that of polymer PM6. Also, the frontier orbital energy levels of the new acceptors and wide-band-gap PM6 are well matched. Bulk heterojunction OSCs were fabricated using PM6 and the acceptors, and the highest power conversion efficiency (PCE) of 10.15% was obtained when using PM6:DTBDT-4F as the active layer.

11.
ACS Appl Mater Interfaces ; 13(45): 54227-54236, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34734703

RESUMEN

It is essential to tune the electrical properties of inorganic semiconductors via a doping process in the fabrication of cutting-edge electronic devices; however, the doping in organic field-effect transistors (OFETs) is limited by the uncontrollable dopant diffusion and low doping efficiencies. This study proposes the use of a fluorinated functional group in a polymer dielectric layer as an effective p-type doping strategy for ambipolar diketopyrrolopyrrole (DPP)-based donor-acceptor (D-A)-type semiconducting copolymer films used in OFETs, without generating structural perturbations. To experimentally verify the surface polarization doping effect of the fluorinated group, two terpolymers─poly(pentafluorostyrene-co-3-azidopropyl-methacrylate-co-propargyl-methacrylate) (5F-SAPMA), wherein fluorinated units are included, and poly(phenyl-methacrylate-co-3-azidopropyl-methacrylate-co-propargyl-methacrylate) (PhAPMA), without fluorinated units─are designed and synthesized for use in OFETs. The synthesized 5F-SAPMA and PhAPMA films were cross-linked through the click reaction between the alkyne and azide units in the terpolymers at 150 °C to provide chemical, thermal, and mechanical stabilities and solvent resistance. The electrical characterization of the OFETs with the newly synthesized terpolymer dielectrics reveals that the surface polarization induced by the fluorinated groups of the 5F-SAPMA dielectrics leads to the generation of additional hole charges and helps minimize the broadening of the extended tail states in the vicinity of the valence band (highest occupied molecular orbital (HOMO) level). This not only enables a transition from the ambipolar to p-type dominant characteristics but also helps increase the hole mobility from 0.023 to 0.305 cm2/(V·s).

12.
ACS Appl Mater Interfaces ; 12(46): 51699-51708, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33140971

RESUMEN

Two polymer donors, PFBDT-8ttTPD and PClBDT-8ttTPD, consisting of halogenated thiophene-substituted benzo[1,2-b:4,5-b']dithiophene and alkyl-substituted thieno[3,2-b]thiophene linked thieno[3,4-c]pyrrole-4,6(5H)-dione, were designed and synthesized for the evaluation of photovoltaic performances. The fabricated IT-4F-based organic solar cells (OSCs) exhibited maximum power conversion efficiency (PCE) values of 12.81 and 11.12% for PFBDT-8ttTPD and PClBDT-8ttTPD, respectively. Furthermore, PFBDT-8ttTPD:Y6 showed significantly improved PCE (15.05%) due to the extended light harvesting in the broad solar spectrum, whereas the PClBDT-8ttTPD:Y6 displayed relatively low PCE (10.02%). A ternary system incorporating PC71BM as the third component into bulk-heterojuction composites (PFBDT-8ttPTD:non-fullerene) was investigated with the aim of utilizing the advantages of PC71BM. As a result, PFBDT-8ttTPD:IT-4F:PC71BM exhibited an improved PCE (13.67%) compared to that of the corresponding binary OSC. In particular, ternary OSC of PFBDT-8ttTPD:Y6:PC71BM showed outstanding photovoltaic performance (PCE = 16.43%) as well as photostability, retaining approximately 80% of the initial PCE after 500 h under continuous illumination. The introduction of a small amount of PC71BM resulted in favorable and dense molecular packing with improved crystallinity as well as enhanced charge carrier mobility for efficient OSC.

13.
ACS Appl Mater Interfaces ; 12(45): 50638-50647, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33108151

RESUMEN

In this work, a series of A-D-A'-D-A-type electron acceptors based on alkylated indacenodithiophene (C8IDT), dicyanated thiophene-flanked 2,1,3-benzothiadiazole (CNDTBT), and 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN) or 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile (FINCN) are synthesized in order to investigate the effect of substituents on their photovoltaic properties. The corresponding CNDTBT-C8IDT-INCN and CNDTBT-C8IDT-FINCN acceptors vary in their optical, electrochemical, morphological, and charge transport properties. The fluorinated-INCN-based acceptor (CNDTBT-C8IDT-FINCN) exhibits lower energy levels, improved absorptivity, narrower π-π spacing, and prominent fibrillar structures when it is blended with poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo [1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T). CNDTBT-C8IDT-FINCN exhibits a high power conversion efficiency (PCE) of 12.33% due to its high and well-balanced charge carrier mobility and distinct face-on orientation. Furthermore, large-area organic solar cells (OSCs) (active area: 55.45 cm2) with CNDTBT-C8IDT-FINCN exhibit a high PCE of 9.21%. This result demonstrates that CNDTBT-C8IDT-FINCN is a suitable and promising electron acceptor for large-area OSCs.

14.
Polymers (Basel) ; 12(9)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957590

RESUMEN

3-(2-Octyldodecyl)thieno[3,2-b]thiophen was successfully synthesized as a new π-bridge with a long branched side alkyl chain. Two donor-π-bridge-acceptor type copolymers were designed and synthesized by combining this π-bridge structure, a fluorinated benzothiadiazole acceptor unit, and a thiophene or thienothiophene donor unit, (PT-ODTTBT or PTT-ODTTBT respectively) through Stille polymerization. Inverted OPV devices with a structure of ITO/ZnO/polymer:PC71BM/MoO3/Ag were fabricated by spin-coating in ambient atmosphere or N2 within a glovebox to evaluate the photovoltaic performance of the synthesized polymers (effective active area: 0.09 cm2). The PTT-ODTTBT:PC71BM-based structure exhibited the highest organic photovoltaic (OPV) device performance, with a maximum power conversion efficiency (PCE) of 7.05 (6.88 ± 0.12)%, a high short-circuit current (Jsc) of 13.96 mA/cm2, and a fill factor (FF) of 66.94 (66.47 ± 0.63)%; whereas the PT-ODTTBT:PC71BM-based device achieved overall lower device performance. According to GIWAXS analysis, both neat and blend films of PTT-ODTTBT exhibited well-organized lamellar stacking, leading to a higher charge carrier mobility than that of PT-ODTTBT. Compared to PT-ODTTBT containing a thiophene donor unit, PTT-ODTTBT containing a thienothiophene donor unit exhibited higher crystallinity, preferential face-on orientation, and a bicontinuous interpenetrating network in the film, which are responsible for the improved OPV performance in terms of high Jsc, FF, and PCE.

15.
J Nanosci Nanotechnol ; 20(8): 4661-4665, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126637

RESUMEN

Photo-crosslinkable hole transporting layer (HTL) consisting of a blend of poly(bis-4-butylphenyl-N,N-bisphenyl)benzidine (poly-TPD) and bis(4-azido-2,3,5,6-tetrafluorobenzoate) (FPA) was applied to red and green organic light-emitting diodes (OLEDs) by solution processing. This photocrosslinking reaction rendered the HTL insoluble in organic solvents and enabled subsequent solution deposition of an upper emissive layer. The solvent resistance of the photo-crosslinked poly-TPD:FPA (1 wt%) film was enhanced compared to that of the non-crosslinked neat poly-TPD film. Solution-processed red and green OLEDs with the poly-TPD:FPA (1 wt%) photo-crosslinked HTL exhibited higher device performances than those with the non-crosslinked poly-TPD HTL.

16.
ACS Appl Mater Interfaces ; 11(50): 47121-47130, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31755688

RESUMEN

The realization of printed organic solar cells (OSCs) as a commercial technology is dependent on the development of high-performance photovoltaic materials suitable for large-scale device manufacture. In this study, the design, synthesis, and characterization of a series of A-D-A'-D-A-type molecular acceptors based on indacenodithienothiophene (IDTT) and thiophene-flanked 2,1,3-benzothiadiazole (DTBT) are reported. The synthesized molecular acceptors showed broader absorption ranges and narrower band gap energies than those of well-known 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno [2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC)-based molecular acceptors. Furthermore, the synthesized acceptors could tune the frontier molecular orbital energy levels, dipole moments, and their crystallinities by introducing fluorine (F) atoms and cyano (CN) groups on DTBT as a core A' unit. The cyano-substituted DTBT-based molecular acceptor (CNDTBT-IDTT-FINCN) showed a strong molar absorptivity and dipole moment, high hole/electron charge mobilities, and a favorable face-on orientation using films blended with poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T). An inverted organic photovoltaic (OPV) device using CNDTBT-IDTT-FINCN exhibits a power conversion efficiency (PCE) of 9.13% when using PBDB-T as a donor material in small cells (0.12 cm2). Sub-module devices with an active area of 55.45 cm2 are fabricated using bar-coating and exhibit PCEs of up to 7.50%. This demonstration of a high-efficiency large-area device makes CNDTBT-IDTT-FINCN a suitable and promising candidate for printed OPV devices.

17.
J Nanosci Nanotechnol ; 19(10): 6158-6163, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026928

RESUMEN

In this study, two new thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPP)-based polymers, poly{2,5-bis(2-dodecylhexadecyl)-3,6-bis(thieno[3,2-b]thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-2, 2'-bithiophene} (PTTDPP-BT) and {2,5-bis(2-dodecylhexadecyl)-3,6-bis(thieno[3,2-b]thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-2,2'-selenophene} (PTTDPP-BSe), which contained bithiophene (BT) and biselenophene (BSe) units, respectively, were designed and synthesized. The introduction of BT and BSe units affected the optical, electrochemical, morphological, and charge transport properties of the polymers. Experimental results revealed that the frontier molecular orbital energy levels of PTTDPP-BT were slightly higher because of the relatively strong electron donating ability of the sulfur atom and the polymer also exhibited good solubility. The maximum mobility in the case of PTTDPP-BT at 250 °C was 0.068 cm² V-1 s-1 and that of PTTDPP-BSe was 0.029 cm² V-1 s-1 (at 200 °C).

18.
J Nanosci Nanotechnol ; 19(10): 6554-6558, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026992

RESUMEN

Synthesizing copolymers from Zn acrylate monomers is an effective strategy employed in the self-polishing materials industry. In this study, we designed and synthesized polyurethane-based self-polishing copolymers with improved surface adhesion properties. The synthesized polyurethane copolymers were characterized using Fourier transform infrared spectroscopy and inductively coupled plasma optical emission spectrometry. The properties of Zn-based polyurethane copolymers were compared with those of Zn-free polyurethane as reference. The erosion rates of the Zn-based polyurethane SPC films were determined by measuring changes in the film thickness after dynamic immersion tests. In comparison to Zn-free polyurethane, the Zn-based polyurethane self-polishing copolymers demonstrated effective self-polishing and surface adhesion properties.

19.
J Nanosci Nanotechnol ; 19(8): 4686-4690, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913769

RESUMEN

An acrylate monomer containing cyclotetrasiloxane (CTS) were designed and synthesized for anti-fouling coating applications. New acryl-based copolymers consisting of styrene and CTS, poly(styrene-co-CTS)s, were synthesized by changing molar ratios via free radical polymerization. The properties of poly(styrene-co-CTS)s were compared with those of poly(styrene) (PS) as a reference. The content of CTS in the copolymer increased its hydrophobicity also decreased whereas its surface decreased. Protein adsorption studies were conducted to evaluate their fouling-release properties.

20.
J Nanosci Nanotechnol ; 19(8): 4705-4709, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913773

RESUMEN

Thermally cross-linkable host materials, DV-TPACZ, DV-TPADBCZ, and TV-TPBI, were designed and synthesized for solution-processed organic light-emitting diodes (OLEDs). The synthesized styrene-functionalized host materials were thermally cross-linked by curing at 150-200 °C without using a polymerization initiator. Excellent solvent resistance was observed for all cured host films. They exhibited low highest occupied molecular orbital energy levels of 5.4-5.7 eV, which indicated a low hole injection barrier from the hole transport layer to the emissive layer. A solution-processed red phosphorescent OLED with 5 wt% (MPHMQ)2Ir (tmd) dopant in the thermally cross-linkable DV-TPACZ host exhibited a current efficiency of 5.3 cd/A, power efficiency of 3.2 lm/W, and external quantum efficiency of 3.6%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...