Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Cell Rep ; 43(3): 113813, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393947

RESUMEN

Peptidoglycan recognition protein 1 (PGLYRP1) is a pattern-recognition protein that mediates antibacterial actions and innate immune responses. Its expression and role in neuroinflammatory conditions remain unclear. We observed the upregulation of PGLYRP1 in inflamed human and mouse spinal cord and brain, with microglia being the primary cellular source. Experiments using a recombinant PGLYRP1 protein show that PGLYRP1 potentiates reactive gliosis, neuroinflammation, and consequent behavioral changes in multiple animal models of neuroinflammation. Furthermore, shRNA-mediated knockdown of Pglyrp1 gene expression attenuates this inflammatory response. In addition, we identify triggering receptor expressed on myeloid cell-1 (TREM1) as an interaction partner of PGLYRP1 and demonstrate that PGLYRP1 promotes neuroinflammation through the TREM1-Syk-Erk1/2-Stat3 axis in cultured glial cells. Taken together, our results reveal a role for microglial PGLYRP1 as a neuroinflammation mediator. Finally, we propose that PGLYRP1 is a potential biomarker and therapeutic target in various neuroinflammatory diseases.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Animales , Ratones , Humanos , Microglía/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Inmunidad Innata , Inflamación/metabolismo , Citocinas/metabolismo
2.
J Microbiol ; 61(10): 891-901, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37851309

RESUMEN

Two novel bacterial strains CJ74T and CJ75T belonging to the genus Flavobacterium were isolated from freshwater of Han River and ginseng soil, South Korea, respectively. Strain CJ74T was Gram-stain-negative, aerobic, rod-shaped, non-motile, and non-flagellated, and did not produce flexirubin-type pigments. Strain CJ75T was Gram-stain-negative, aerobic, rod-shaped, motile by gliding, and non-flagellated, and produced flexirubin-type pigments. Both strains were shown to grow optimally at 30 °C in the absence of NaCl on R2A medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ74T and CJ75T belonged to the genus Flavobacterium and were most closely related to Flavobacterium niveum TAPW14T and Flavobacterium foetidum CJ42T with 96.17% and 97.29% 16S rRNA sequence similarities, respectively. Genomic analyses including the reconstruction of phylogenomic tree, average nucleotide identity, and digital DNA-DNA hybridization suggested that they were novel species of the genus Flavobacterium. Both strains contained menaquinone 6 (MK-6) as the primary respiratory quinone and phosphatidylethanolamine as a major polar lipid. The predominant fatty acids of both strains were iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). Based on the polyphasic taxonomic study, strains CJ74T and CJ75T represent novel species of the genus Flavobacterium, for which names Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov. are proposed, respectively. The type strains are CJ74T (=KACC 19819T =JCM 32889T) and CJ75T (=KACC 23149T =JCM 36132T).


Asunto(s)
Flavobacterium , Suelo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ácidos Grasos/análisis , Agua Dulce/microbiología , Vitamina K 2 , ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
3.
Korean J Physiol Pharmacol ; 27(4): 417-426, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37394239

RESUMEN

The TRPM4 gene encodes a Ca2+-activated monovalent cation channel called transient receptor potential melastatin 4 (TRPM4) that is expressed in various tissues. Dysregulation or abnormal expression of TRPM4 has been linked to a range of diseases. We introduced the hemagglutinin (HA) tag into the extracellular S6 loop of TRPM4, resulting in an HA-tagged version called TRPM4-HA. This TRPM4-HA was developed to investigate the purification, localization, and function of TRPM4 in different physiological and pathological conditions. TRPM4-HA was successfully expressed in the intact cell membrane and exhibited similar electrophysiological properties, such as the current-voltage relationship, rapid desensitization, and current size, compared to the wild-type TRPM4. The presence of the TRPM4 inhibitor 9-phenanthrol did not affect these properties. Furthermore, a wound-healing assay showed that TRPM4-HA induced cell proliferation and migration, similar to the native TRPM4. Co-expression of protein tyrosine phosphatase, non-receptor type 6 (PTPN6 or SHP-1) with TRPM4-HA led to the translocation of TRPM4-HA to the cytosol. To investigate the interaction between PTPN6 and tyrosine residues of TRPM4 in enhancing channel activity, we generated four mutants in which tyrosine (Y) residues were substituted with phenylalanine (F) at the N-terminus of TRPM4. The YF mutants displayed properties and functions similar to TRPM4-HA, except for the Y256F mutant, which showed resistance to 9-phenanthrol, suggesting that Y256 may be involved in the binding site for 9-phenanthrol. Overall, the creation of HA-tagged TRPM4 provides researchers with a valuable tool to study the role of TRPM4 in different conditions and its potential interactions with other proteins, such as PTPN6.

4.
Brain Struct Funct ; 228(7): 1629-1641, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421418

RESUMEN

Astrocyte elevated gene-1 (AEG-1) is a well-known oncogene implicated in various types of human cancers, including brain tumors. Recently, AEG-1 has also been reported to play pivotal roles in glioma-associated neurodegeneration and neurodegenerative diseases like Parkinson's disease and amyotrophic lateral sclerosis. However, the normal physiological functions and expression patterns of AEG-1 in the brain are not well understood. In this study, we investigated the expression patterns of AEG-1 in the normal mouse brain and found that AEG-1 is widely expressed in neurons and neuronal precursor cells, but little in glial cells. We observed differential expression levels of AEG-1 in various brain regions, and its expression was mainly localized in the cell body of neurons rather than the nucleus. Additionally, AEG-1 was expressed in the cytoplasm of Purkinje cells in both the mouse and human cerebellum, suggesting its potential role in this brain region. These findings suggest that AEG-1 may have important functions in normal brain physiology and warrant further investigation. Our results may also shed light on the differential expression patterns of AEG-1 in normal and pathological brains, providing insights into its roles in various neurological disorders.


Asunto(s)
Encéfalo , Proteínas de la Membrana , Animales , Humanos , Ratones , Encéfalo/metabolismo , Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
5.
Biomed Pharmacother ; 165: 115139, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37454597

RESUMEN

TREK-1 (TWIK-related potassium channel-1) is a subunit of the two-pore domain potassium (K2p) channel and is widely expressed in the brain. TREK-1 knockout mice were shown to have antidepressant-like effects, providing evidence for the channel's potential as a therapeutic target. However, currently there is no good pharmacological inhibitor specifically targeting TREK-1 containing K2p channels that also displays similar antidepressant-like effects. Here, we sought to find selective and potent inhibitors for TREK-1 related dimers both in vitro and in vivo. We synthesized and evaluated 2-hydroxy-3-phenoxypropyl piperidine derivatives yielding a library from which many TREK-1 targeting candidates emerged. Among these, hydroxyl-phenyl- (2a), piperidino- (2g), and pyrrolidino- (2h) piperidinyl substituted compounds showed high potencies to TREK-1 homodimers with significant antidepressant-like effects in forced swim test and tail suspension test. Interestingly, these compounds were found to have high potencies to TWIK-1/TREK-1 heterodimers. Contrastingly, difluoropiperidinyl-4-fluorophenoxy (3e) and 4-hydroxyphenyl-piperidinyl-4-fluorophenoxy (3j) compounds had high potencies to TREK-1 homodimer but lower potency to TWIK-1/TREK-1 heterodimers without significant antidepressant-like effects. We observed positive correlation between inhibition potency to TWIK-1/TREK-1 and immobility time, and no correlation between inhibition potency to TREK-1 homodimer and immobility time. This was consistent with molecular docking simulations of selected compounds to TREK-1 homodimeric and TWIK-1/TREK-1 heterodimeric models. Existing antidepressant fluoxetine was also found to potently inhibit TWIK-1/TREK-1 heterodimers. Our study reveals novel potent TWIK-1/TREK-1 inhibitors 2a, 2g, and 2h as potential antidepressants and suggest that the TWIK-1/TREK-1 heterodimer could be a potential novel molecular therapeutic target for antidepressants.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Ratones , Animales , Simulación del Acoplamiento Molecular , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Encéfalo/metabolismo , Antidepresivos/farmacología , Ratones Noqueados
6.
Cells ; 12(11)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37296621

RESUMEN

K2P channels, also known as two-pore domain K+ channels, play a crucial role in maintaining the cell membrane potential and contributing to potassium homeostasis due to their leaky nature. The TREK, or tandem of pore domains in a weak inward rectifying K+ channel (TWIK)-related K+ channel, subfamily within the K2P family consists of mechanical channels regulated by various stimuli and binding proteins. Although TREK1 and TREK2 within the TREK subfamily share many similarities, ß-COP, which was previously known to bind to TREK1, exhibits a distinct binding pattern to other members of the TREK subfamily, including TREK2 and the TRAAK (TWIK-related acid-arachidonic activated K+ channel). In contrast to TREK1, ß-COP binds to the C-terminus of TREK2 and reduces its cell surface expression but does not bind to TRAAK. Furthermore, ß-COP cannot bind to TREK2 mutants with deletions or point mutations in the C-terminus and does not affect the surface expression of these TREK2 mutants. These results emphasize the unique role of ß-COP in regulating the surface expression of the TREK family.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Proteína Coatómero/metabolismo
7.
Mol Brain ; 16(1): 2, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604743

RESUMEN

The 14-3-3 protein family with seven isoforms found in mammals is widely expressed in the brain and plays various roles in cellular processes. Several studies have reported that 14-3-3γ, one of the 14-3-3 protein isoforms, is associated with neurological and psychiatric disorders, but the role of 14-3-3γ in the pathophysiology of brain diseases is unclear. Although studies have been conducted on the relationship between 14-3-3γ protein and Parkinson's disease (PD), a common neurodegenerative disorder with severe motor symptoms such as bradykinesia and rigidity, a direct connection remains to be elucidated. We recently showed that adult heterozygous 14-3-3γ knockout mice are hyperactive and exhibit anxiety-like behavior. In this study, we further characterized the molecular and behavioral changes in aged 14-3-3γ heterozygous mice to investigate the role of 14-3-3γ in the brain. We observed decreased dopamine levels and altered dopamine metabolism in the brains of these mice, including changes in the phosphorylation of proteins implicated in PD pathology. Furthermore, we confirmed that they displayed PD symptom-like behavioral deficits, such as impaired motor coordination and decreased ability to the nest-building activity. These findings suggest an association between 14-3-3γ dysfunction and PD pathophysiology.


Asunto(s)
Proteínas 14-3-3 , Dopamina , Enfermedad de Parkinson , Animales , Ratones , Ataxia , Haploinsuficiencia , Ratones Noqueados , Enfermedad de Parkinson/patología , Proteínas 14-3-3/genética
8.
Front Cell Neurosci ; 16: 1054956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531137

RESUMEN

Astrocytes play an important role in increasing synaptic plasticity, regulating endogenous homeostasis, and contributing to neuroprotection but become overactivated or apoptotic in persistent neuroinflammatory responses or pathological conditions. Although gliogenesis under these conditions may be essential for neuronal protection, much remains unknown. Here, we generated new conditional transgenic mice (cTg) that can induce apoptosis via Cre-dependent active caspase-3 (taCasp3-2A-TEVp) without pathological conditions. We induced apoptosis of hippocampal CA1 astrocytes in cTg mice using GFAP promoter-driven adeno-associated virus (AAV) containing Cre recombinase. Activated caspase-3 was detected in astrocytes of the hippocampal CA1, and the number of astrocytes decreased sharply at 1 week but recovered at 2 weeks and was maintained until 4 weeks. Nuclear factor 1A (NF1A) mRNA, an important transcription factor for hippocampal reactive astrocytes, was significantly increased only at week 1. Interestingly, all reactive markers (pan, A1, A2) increased despite the decreased number of astrocytes at week 1, and there was no change in monoamine oxidase B (MAOB) observed in astrocytes of animal models of degenerative brain disease. Extensive CA1 astrocyte depletion at week 1 induced cognitive deficits; however, both recovered at weeks 2 and 4. Overall, transient hippocampal astrocyte depletion caused by apoptosis restored cell number and function within 2 weeks and did not induce significant neurotoxicity. Therefore, cTg mice are valuable as an in vivo animal model for studying gliogenesis in multiple regions of the adult brain.

9.
Cells ; 11(20)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291187

RESUMEN

Mature astrocytes are characterized by a K+ conductance (passive conductance) that changes with a constant slope with voltage, which is involved in K+ homeostasis in the brain. Recently, we reported that the tandem of pore domains in a weak inward rectifying K+ channel (TWIK1 or KCNK1) and TWIK-related K+ channel 1 (TREK1 or KCNK2) form heterodimeric channels that mediate passive conductance in astrocytes. However, little is known about the binding proteins that regulate the function of the TWIK1/TREK1 heterodimeric channels. Here, we found that ß-coat protein (COP) regulated the surface expression and activity of the TWIK1/TREK1 heterodimeric channels in astrocytes. ß-COP binds directly to TREK1 but not TWIK1 in a heterologous expression system. However, ß-COP also interacts with the TWIK1/TREK1 heterodimeric channel in a TREK1 dependent manner and enhances the surface expression of the heterodimeric channel in astrocytes. Consequently, it regulates TWIK1/TREK1 heterodimeric channel-mediated passive conductance in astrocytes in the mouse brain. Taken together, these results suggest that ß-COP is a potential regulator of astrocytic passive conductance in the brain.


Asunto(s)
Astrocitos , Canales de Potasio de Dominio Poro en Tándem , Animales , Ratones , Astrocitos/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Proteína Coatómero/metabolismo
10.
Glia ; 70(10): 1902-1926, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35670184

RESUMEN

Cathelicidin-related antimicrobial peptide (CRAMP) is an effector molecule of the innate immune system with direct antimicrobial and immunomodulatory activities; however, its role in neuroinflammatory responses and related diseases is not clearly understood. In particular, the expression of CRAMP and its functional role has not been previously studied in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis (MS). Here, we investigated the role of CRAMP in neuroinflammation, using an EAE mouse model of MS and postmortem patient tissues. We found that the CRAMP expression was increased in the spinal cords of EAE-induced mice. Immunofluorescence analysis revealed that CRAMP is mainly induced in reactive astrocytes in the inflamed spinal cord of EAE mice. A similar pattern of the LL-37 (human CRAMP) expression was observed in the brain and spinal cord tissues of patients with MS. An intrathecal injection of the CRAMP peptide in EAE mice accelerated the onset of symptoms and increased disease severity with augmented expression of inflammatory mediators, glial activation, infiltration of inflammatory cells, and demyelination. In addition, shRNA-mediated knockdown of Cramp in the spinal cord resulted in a milder disease course with less inflammation in EAE mice. We identified FPR2 on microglia as a CRAMP receptor and demonstrated that CRAMP potentiates IFN-γ-induced microglial activation via the STAT3 pathway. Taken together, our findings suggest that CRAMP is a novel mediator of astrocyte-microglia interactions in neuroinflammatory conditions such as EAE. Thus, CRAMP could be exploited as a biomarker or therapeutic target for the diagnosis or treatment of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Astrocitos/metabolismo , Comunicación , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Enfermedades Neuroinflamatorias , Médula Espinal/metabolismo , Catelicidinas
11.
Front Immunol ; 13: 805076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432302

RESUMEN

Trabecular meshwork (TM) cells are phagocytic cells that employ mechanotransduction to actively regulate intraocular pressure. Similar to macrophages, they express scavenger receptors and participate in antigen presentation within the immunosuppressive milieu of the anterior eye. Changes in pressure deform and compress the TM, altering their control of aqueous humor outflow but it is not known whether transducer activation shapes temporal signaling. The present study combines electrophysiology, histochemistry and functional imaging with gene silencing and heterologous expression to gain insight into Ca2+ signaling downstream from TRPV4 (Transient Receptor Potential Vanilloid 4), a stretch-activated polymodal cation channel. Human TM cells respond to the TRPV4 agonist GSK1016790A with fluctuations in intracellular Ca2+ concentration ([Ca2+]i) and an increase in [Na+]i. [Ca2+]i oscillations coincided with monovalent cation current that was suppressed by BAPTA, Ruthenium Red and the TRPM4 (Transient Receptor Potential Melastatin 4) channel inhibitor 9-phenanthrol. TM cells expressed TRPM4 mRNA, protein at the expected 130-150 kDa and showed punctate TRPM4 immunoreactivity at the membrane surface. Genetic silencing of TRPM4 antagonized TRPV4-evoked oscillatory signaling whereas TRPV4 and TRPM4 co-expression in HEK-293 cells reconstituted the oscillations. Membrane potential recordings suggested that TRPM4-dependent oscillations require release of Ca2+ from internal stores. 9-phenanthrol did not affect the outflow facility in mouse eyes and eyes from animals lacking TRPM4 had normal intraocular pressure. Collectively, our results show that TRPV4 activity initiates dynamic calcium signaling in TM cells by stimulating TRPM4 channels and intracellular Ca2+ release. It is possible that TRPV4-TRPM4 interactions downstream from the tensile and compressive impact of intraocular pressure contribute to homeostatic regulation and pathological remodeling within the conventional outflow pathway.


Asunto(s)
Canales Catiónicos TRPM , Malla Trabecular , Animales , Señalización del Calcio , Células HEK293 , Humanos , Mecanotransducción Celular , Ratones , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Malla Trabecular/metabolismo
12.
Life (Basel) ; 12(4)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35455021

RESUMEN

The Tweety homolog (TTYH) chloride channel family is involved in oncogenic processes including cell proliferation, invasion, and colonization of cancers. Among the TTYH family, TTYH1 is highly expressed in several cancer cells, such as glioma, breast, and gastric cancer cells. However, the role of TTYH1 in the progression of osteosarcoma remains unknown. Here, we report that deficient TTYH1 expression results in the inhibition of the migration and invasion of U2OS human osteosarcoma cells. We found that TTYH1 was endogenously expressed at both mRNA and protein levels in U2OS cells and that these channels were located at the plasma membrane of the cells. Moreover, we found that silencing of the TTYH1 with small interfering RNA (siRNA) resulted in a decrease in the migration and invasion of U2OS cells, while the proliferation of the cells was not affected. Additionally, treatment with TTYH1 siRNA significantly suppressed the mRNA expression of epithelial−mesenchymal transition (EMT)-regulated transcription factors such as Zinc E-Box Binding Homeobox 1 (ZEB1) and SNAIL. Most importantly, the expression of matrix metalloproteinase (MMP)-2, MPP-9, and N-cadherin was dramatically reduced following the silencing of TTYH1. Taken together, our findings suggest that silencing of TTYH1 expression reduces migration and invasion of U2OS cells and that TTYH1 may act as a potential molecular target for osteosarcoma treatment.

13.
Behav Brain Res ; 426: 113841, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35292331

RESUMEN

The medial habenula (mHb), a subregion of the habenula, is involved in diverse brain functions, such as nicotine addiction, anxiety, and anhedonia. We recently reported that TMEM16A deficiency, a calcium-activated chloride channel, decreased the activity of mHb cholinergic neurons. Since downregulated activity in cholinergic neurons of the mHb is involved in anhedonia-like behavior, we here investigated whether conditional deletion of TMEM16A in mHb cholinergic neurons also displays anhedonia-like behavior. The conditional deletion of TMEM16A in the mHb cholinergic neurons of mice (TMEM16A cKO mice) was generated by crossing ChaT-Cre (+) with floxed TMEM16A f/f mice. TMEM16A cKO mice displayed significantly reduced social interaction, sucrose preference, female urine sniffing, and increased marble burying. These behavioral data suggest the potential role of TMEM16A in anhedonic-like behavior in mice. Taken together, the presented data suggest that TMEM16A-mediated mHb activity might be a therapeutic target for anhedonia-related symptoms.


Asunto(s)
Habénula , Anhedonia , Animales , Ansiedad , Neuronas Colinérgicas , Femenino , Habénula/fisiología , Ratones , Ratones Endogámicos C57BL
14.
Front Cell Neurosci ; 16: 839118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281301

RESUMEN

Transgenic mice are a useful tool for exploring various aspects of gene function. A key element of this approach is the targeted overexpression of specific genes in cells or tissues. Herein, we report for the first time, the generation and characterization of conditional transgenic (cTg) mice for lipocalin-2 (LCN2) expression. We generated the R26-LCN2-transgenic (LCN2-cTg) mice that carried a loxP-flanked STOP (neo) cassette, Lcn2 cDNA, and a GFP sequence. When bred with Tg mice expressing Cre recombinase under the control of various tissues or cell-specific promoters, Cre-mediated recombination deletes the STOP cassette and allows the expression of LCN2 and GFP. In this study, we achieved the recombination of loxP-flanked LCN2 in hippocampal astrocytes of cTg mouse brain, using a targeted delivery of adeno-associated virus (AAVs) bearing Cre recombinase under the control of a GFAP promoter (AAVs-GFAP-mCherry-Cre). These mice with localized LCN2 overexpression in astrocytes of the hippocampus developed neuroinflammation with enhanced glial activation and increased mRNA and protein levels of proinflammatory cytokines. Furthermore, mice showed impairment in cognitive functions as a typical symptom of hippocampal inflammation. Taken together, our study demonstrates the usefulness of LCN2-cTg mice in targeting specific cells at various organs for conditional LCN2 expression and for subsequent investigation of the functional role of cell-type-specific LCN2 within these sites. Moreover, the LCN2-cTg mice with targeted expression of LCN2 in hippocampal astrocytes are a new in vivo model of neuroinflammation.

15.
J Neurosci Methods ; 368: 109452, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953938

RESUMEN

BACKGROUND: RNA interference (RNAi) is a powerful technique to effectively silence or knock down gene function in mammalian cells. For better cell-type RNAi experiments in vivo, AAV vector-based RNA interference systems need to be improved. New method: In this study, we developed an AAV vector (CREon shRNA) that expressed CRE-dependent short hairpin RNA (shRNA) and fluorescent proteins simultaneously. RESULTS: We verified the Cre-dependent knockdown efficiency of the newly developed CREon shRNA vector in both HEK293T cells overexpressing TREK-1 and PC3 cells with endogenous TREK-1. Next, we packaged this TREK-1 CREon vector with AAV and injected it into the hippocampus of the brain together with a synapsin or GFAP promoter-driven CRE virus, confirming that it works well cell-selectively even in vivo. Finally, this viral vector was applied to an animal model of LPS-induced depression to determine whether behavioral changes occurred. Comparison with existing methods: With the existing pSico or pAAV-Sico-Red vectors, expression of fluorescent protein disappears when shRNA is conditionally activated by CRE recombinase, but our Creon shRNA vector showed simultaneous expression of both shRNA and fluorescent protein. Thus, it offers the advantage of allowing easy visual distinction of knocked-down cells. CONCLUSION: The newly improved CREon shRNA vector can be used as a novel research tool for conditional shRNA, and may be useful for various in vivo studies such as cancer and neurobiology.


Asunto(s)
Vectores Genéticos , Mamíferos , Animales , Células HEK293 , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
17.
Cells ; 10(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685731

RESUMEN

TWIK-1 is the first identified member of the two-pore domain potassium (K2P) channels that are involved in neuronal excitability and astrocytic passive conductance in the brain. Despite the physiological roles of TWIK-1, there is still a lack of information on the basic expression patterns of TWIK-1 proteins in the brain. Here, using a modified bacterial artificial chromosome (BAC), we generated a transgenic mouse (Tg mouse) line expressing green fluorescent protein (GFP) under the control of the TWIK-1 promoter (TWIK-1 BAC-GFP Tg mice). We confirmed that nearly all GFP-producing cells co-expressed endogenous TWIK-1 in the brain of TWIK-1 BAC-GFP Tg mice. GFP signals were highly expressed in various brain areas, including the dentate gyrus (DG), lateral entorhinal cortex (LEC), and cerebellum (Cb). In addition, we found that GFP signals were highly expressed in immature granule cells in the DG. Finally, our TWIK-1 BAC-GFP Tg mice mimic the upregulation of TWIK-1 mRNA expression in the hippocampus following the injection of kainic acid (KA). Our data clearly showed that TWIK-1 BAC-GFP Tg mice are a useful animal model for studying the mechanisms regulating TWIK-1 gene expression and the physiological roles of TWIK-1 channels in the brain.


Asunto(s)
Cromosomas Artificiales Bacterianos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Animales , Cerebelo/metabolismo , Giro Dentado/metabolismo , Corteza Entorrinal/metabolismo , Ácido Kaínico , Ratones Transgénicos , Modelos Animales , Neuroglía/metabolismo , Neuronas/metabolismo , Reproducibilidad de los Resultados , Regulación hacia Arriba
18.
Prog Neurobiol ; 204: 102110, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34166773

RESUMEN

Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.


Asunto(s)
Enfermedad de Huntington , Animales , Cuerpo Estriado , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Proteína p53 Supresora de Tumor/genética , Proteína Inhibidora de la Apoptosis Ligada a X/genética
19.
Prog Neurobiol ; 203: 102075, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34004220

RESUMEN

Amyloid-ß (Aß) and tau are major pathological hallmarks of Alzheimer's disease (AD). Several studies have revealed that Aß accelerates pathological tau transition and spreading during the disease progression, and that reducing tau can mitigate pathological features of AD. However, molecular links between Aß and tau pathologies remain elusive. Here, we suggest a novel role for the plexin-A4 as an Aß receptor that induces aggregated tau pathology. Plexin-A4, previously known as proteins involved in regulating axon guidance and synaptic plasticity, can bound to Aß with co-receptor, neuropilin-2. Genetic downregulation of plexin-A4 in neurons was sufficient to prevent Aß-induced activation of CDK5 and reduce tau hyperphosphorylation and aggregation, even in the presence of Aß. In an AD mouse model that manifests both Aß and tau pathologies, genetic downregulation of plexin-A4 in the hippocampus reduced tau pathology and ameliorated spatial memory impairment. Collectively, these results indicate that the plexin-A4 is capable of mediating Aß-induced tau pathology in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animales , Moléculas de Adhesión Celular , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso , Proteínas tau
20.
Cell Death Differ ; 28(9): 2571-2588, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33753902

RESUMEN

Hevin, also known as SPARC-like protein 1 (SPARCL1 or SC1), is a synaptogenic protein secreted by astrocytes and modulates the formation of glutamatergic synapses in the developing brain by interacting with synaptic adhesion proteins, such as neurexin and neuroligin. Here, we identified the neuron-specific vesicular protein calcyon as a novel interaction partner of hevin and demonstrated that this interaction played a pivotal role in synaptic reorganization after an injury in the mature brain. Astrocytic hevin was upregulated post-injury in a photothrombotic stroke model. Hevin was fragmented by MMP3 induced during the acute stage of brain injury, and this process was associated with severe gliosis. At the late stage, the functional hevin level was restored as MMP3 expression decreased. The C-terminus of hevin interacted with the N-terminus of calcyon. By using RNAi and binding competitor peptides in an ischemic brain injury model, we showed that this interaction was crucial in synaptic and functional recoveries in the sensory-motor cortex, based on histological and electrophysiological analyses. Regulated expression of hevin and calcyon and interaction between them were confirmed in a mouse model of traumatic brain injury and patients with chronic traumatic encephalopathy. Our study provides direct evidence for the causal relationship between the hevin-calcyon interaction and synaptic reorganization after brain injury. This neuron-glia interaction can be exploited to modulate synaptic reorganization under various neurological conditions.


Asunto(s)
Lesiones Encefálicas/terapia , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Membrana/uso terapéutico , Animales , Humanos , Masculino , Ratones , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...