Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e30222, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737246

RESUMEN

After the first outbreak, SARS-CoV-2 infection continues to occur due to the emergence of new variants. There is limited information available on the comparative evaluation of evolutionary characteristics of SARS-CoV-2 among different countries over time, and its relatedness to epidemiological and socio-environmental factors within those countries. We assessed comparative Bayesian evolutionary characteristics for SARS-CoV-2 in eight countries from 2020 to 2022 using BEAST version 2.6.7. Additionally, the relatedness between virus evolution factors and both epidemiological and socio-environmental factors was analyzed using Pearson's correlation coefficient. The estimated substitution rates in the gene encoding S protein of SARS-CoV-2 exhibited a continuous increase from 2020 to 2022 and were divided into two distinct groups in 2022 (p value < 0.05). Effective population size (Ne) generally showed decreased patterns by time. Notably, the change rates of the substitution rates were negatively correlated with the cumulative vaccination rates in 2021. A strict and rapid vaccination policy in the United Arab Emirates dramatically reduced the evolution of the virus, compared to other countries. Also, the average yearly temperature in countries were negatively correlated with the substitution rates. The changes of six epitopes in SARS-CoV-2 were related to various socio-environmental factors. We figured out comparative virus evolutionary traits and the association of epidemiological and socio-environmental factors especially cumulative vaccination rates and average temperature.

2.
EJNMMI Radiopharm Chem ; 9(1): 12, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358577

RESUMEN

BACKGROUND: Nanoparticles exhibit distinct behaviours within the body, depending on their physicochemical properties and administration routes. However, in vivo behaviour of poly(lactic-co-glycolic acid) (PLGA) nanoparticles, especially when administered nasally, remains unexplored; furthermore, there is a lack of comparative analysis of uptake efficiency among different administration routes. Therefore, here, we aimed to comprehensively investigate the real-time in vivo behaviour of PLGA nanoparticles across various administration routes. PLGA-NH2 nanoparticles of three sizes were synthesised using an oil-in-water single-emulsion method. We assessed their uptake by murine macrophage RAW264.7 cells using fluorescence microscopy. To enable real-time tracking, we conjugated p-SCN-Bn-deferoxamine to PLGA-NH2 nanoparticles and further radiolabelled them with 89Zr-oxalate before administration to mice via different routes. Nanoparticle internalisation by lung immune cells was monitored using fluorescence-activated cell sorting analysis. RESULTS: The nanoparticle sizes were 294 ± 2.1 (small), 522.5 ± 5.58 (intermediate), and 850 ± 18.52 nm (large). Fluorescent labelling did not significantly alter the nanoparticle size and charge. The level of uptake of small and large nanoparticles by RAW264.7 cells was similar, with phagocytosis inhibition primarily reducing the internalisation of large particles. Positron emission tomography revealed that intranasal delivery resulted in the highest and most targeted pulmonary uptake, whereas intravenous administration led to accumulation mainly in the liver and spleen. Nasal delivery of large nanoparticles resulted in enhanced uptake by myeloid immune cells relative to lymphoid cells, whereas dendritic cell uptake initially peaked but declined over time. CONCLUSIONS: Our study provides valuable insights into advancing nanomedicine and drug delivery, with the potential for expanding the clinical applications of nanoparticles.

3.
J Med Primatol ; 53(1): e12668, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37583034

RESUMEN

Acute gastric dilatation (AGD) is one of the most prevalent and life-threatening diseases in nonhuman primates worldwide. However, the etiology of this syndrome has not been determined. Recently, sudden death occurred in a 7-year-old female cynomolgus monkey with a history of fecal microbiota transplantation using diarrheic stools. The monkey had undergone surgery previously. On necropsy, gastric dilatation and rupture demonstrated a tetrad arrangement on histopathologic examination. On 16S rRNA sequencing, a high population of Clostridium ventriculi was identified in the duodenum adjacent to stomach but not in the colon. This paper is the first report of Clostridium ventriculi infection in a cynomolgus macaque with acute gastric dilatation and rupture.


Asunto(s)
Clostridium , Dilatación Gástrica , Femenino , Animales , Macaca fascicularis , Dilatación Gástrica/veterinaria , Dilatación Gástrica/patología , ARN Ribosómico 16S
4.
J Korean Med Sci ; 38(47): e401, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38050913

RESUMEN

BACKGROUND: Several cases of pediatric acute hepatitis of unknown etiology related to adenoviral infections have been reported in Europe since January 2022. The aim of this study was to compare the incidence, severity, possible etiology, and prognosis of the disease with those in the past in Korea. METHODS: The surveillance group collected data between May and November 2022 using a surveillance system. Acute hepatitis of unknown etiology was defined in patients aged < 16 years with a serum transaminase level > 500 IU/L, not due to hepatitis A-E or other underlying causes. For comparison, data from 18 university hospitals were retrospectively collected as a control group between January 2021 and April 2022. RESULTS: We enrolled 270 patients (mean age, 5 years). The most common symptom was fever. However, the incidence was similar between 2021 and 2022. Liver function test results, number of patients with acute liver failure (ALF), liver transplantation (LT), death, and adenovirus detection rates did not differ between the two groups. None of the adenovirus-positive patients in either group experienced ALF, LT, or death. In the surveillance group, adenovirus-associated virus-2 was detected in four patients, one of whom underwent LT. Patients with an unknown etiology showed significantly higher bilirubin levels, a lower platelet count, and a higher LT rate than patients with a possible etiology. CONCLUSION: The incidence of pediatric acute hepatitis of unknown etiology and adenovirus detection rate have not increased in Korea.


Asunto(s)
Hepatitis , Fallo Hepático Agudo , Trasplante de Hígado , Humanos , Niño , Preescolar , Estudios Retrospectivos , Trasplante de Hígado/efectos adversos , Pronóstico , Fallo Hepático Agudo/diagnóstico , Fallo Hepático Agudo/epidemiología , Fallo Hepático Agudo/etiología , Enfermedad Aguda , Adenoviridae , República de Corea/epidemiología
5.
J Med Virol ; 95(12): e29309, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38100632

RESUMEN

The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Animales , Ratones , Virus del Papiloma Humano , Proteínas Oncogénicas Virales/genética , Infecciones por Papillomavirus/prevención & control , ARN Mensajero/genética , Proteínas E7 de Papillomavirus/genética , Ratones Endogámicos C57BL , Vacunación/métodos , Inmunización , Neoplasias del Cuello Uterino/prevención & control
6.
Commun Biol ; 6(1): 879, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640792

RESUMEN

Characterizing the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the molecular level is necessary to understand viral pathogenesis and identify clinically relevant biomarkers. However, in humans, the pulmonary host response during disease onset remains poorly understood. Herein, we utilized a spatial transcriptome atlas to identify pulmonary microstructure-specific COVID-19 gene signatures during the acute phase of lung infection in cynomolgus macaques. The innate immune response to virus-induced cell death was primarily active in the alveolar regions involving activated macrophage infiltration. Inflamed vascular regions exhibited prominent upregulation of interferon and complement pathway genes that mediate antiviral activity and tissue damage response. Furthermore, known biomarker genes were significantly expressed in specific microstructures, and some of them were universally expressed across all microstructures. These findings underscore the importance of identifying key drivers of disease progression and clinically applicable biomarkers by focusing on pulmonary microstructures appearing during SARS-CoV-2 infection.


Asunto(s)
Ascomicetos , COVID-19 , Humanos , Animales , COVID-19/genética , SARS-CoV-2 , Transcriptoma , Macaca fascicularis , Pulmón
7.
J Med Virol ; 95(6): e28847, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272485

RESUMEN

Recently emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants are generally less pathogenic than previous strains. However, elucidating the molecular basis for pulmonary immune response alterations is challenging owing to the virus's heterogeneous distribution within complex tissue structure. Here, we revealed the spatial transcriptomic profiles of pulmonary microstructures at the SARS-CoV-2 infection site in the nine cynomolgus macaques upon inoculation with the Delta and Omicron variants. Delta- and Omicron-infected lungs had upregulation of genes involved in inflammation, cytokine response, complement, cell damage, proliferation, and differentiation pathways. Depending on the tissue microstructures (alveoli, bronchioles, and blood vessels), there were differences in the types of significantly upregulated genes in each pathway. Notably, a limited number of genes involved in cytokine and cell damage response were differentially expressed between bronchioles of the Delta- and Omicron-infection groups. These results indicated that despite a significant antigenic shift in SARS-CoV-2, the host immune response mechanisms induced by the variants were relatively consistent, with limited transcriptional alterations observed only in large airways. This study may aid in understanding the pathogenesis of SARS-CoV-2 and developing a clinical strategy for addressing immune dysregulation by identifying potential transcriptional biomarkers within pulmonary microstructures during infection with emerging variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , SARS-CoV-2/genética , Transcriptoma , COVID-19/genética , Alveolos Pulmonares , Citocinas/genética , Macaca
9.
Heliyon ; 8(10): e11212, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36311366

RESUMEN

Dengue viruses (DENVs) exploit monocytes and macrophages for tropism and replication, therefore, establishing a long-term reservoir. However, their roles in dengue pathogenesis remains unclear. Here, using the human monocytic cell line THP-1, human primary monocytes, and non-human primate models, we show that DENV-infected monocytes represent suitable carriers for circulatory viral dissemination. Monocyte-derived macrophages expressing M2 surface markers at the gene level efficiently replicated, while the productivity of monocyte replication was low. However, attachment of DENVs to the cellular surface of monocytes was similar to that of macrophages. Furthermore, after differentiation with type-2 cytokines, DENV-attached monocytes could replicate DENVs. Productive DENV infection was confirmed by intravenous injection of DENVs into nonhuman primate model, in which, DENV attachment to monocytes was positively correlated with viremia. These results provide insight into the role of circulating monocytes in DENV infection, suggesting that monocytes directly assist in DENV dissemination and replication during viremia and could be applied to design antiviral intervention.

10.
Immune Netw ; 22(6): e48, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36627939

RESUMEN

With the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, which are randomly mutated, the dominant strains in regions are changing globally. The development of preclinical animal models is imperative to validate vaccines and therapeutics against SARS-CoV-2 variants. The objective of this study was to develop a non-human primate (NHP) model for SARS-CoV-2 Delta variant infection. Cynomolgus macaques infected with Delta variants showed infectious viruses and viral RNA in the upper (nasal and throat) and lower respiratory (lung) tracts during the acute phase of infection. After 3 days of infection, lesions consistent with diffuse alveolar damage were observed in the lungs. For cellular immune responses, all macaques displayed transient lymphopenia and neutrophilia in the early stages of infection. SARS-CoV-2 Delta variant spike protein-specific IgM, IgG, and IgA levels were significantly increased in the plasma of these animals 14 days after infection. This new NHP Delta variant infection model can be used for comparative analysis of the difference in severity between SARS-CoV-2 variants of concern and may be useful in the efficacy evaluation of vaccines and universal therapeutic drugs for mutations.

11.
J Infect Dis ; 224(11): 1861-1872, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718664

RESUMEN

Germinal centers (GCs) elicit protective humoral immunity through a combination of antibody-secreting cells and memory B cells, following pathogen invasion or vaccination. However, the possibility of a GC response inducing protective immunity against reinfection following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unknown. We found GC activity was consistent with seroconversion observed in recovered macaques and humans. Rechallenge with a different clade of virus resulted in significant reduction in replicating virus titers in respiratory tracts in macaques with high GC activity. However, diffuse alveolar damage and increased fibrotic tissue were observed in lungs of reinfected macaques. Our study highlights the importance of GCs developed during natural SARS-CoV-2 infection in managing viral loads in subsequent infections. However, their ability to alleviate lung damage remains to be determined. These results may improve understanding of SARS-CoV-2-induced immune responses, resulting in better coronavirus disease 2019 (COVID-19) diagnosis, treatment, and vaccine development.


Asunto(s)
COVID-19 , Centro Germinal , Inmunidad Humoral , Reinfección/inmunología , Animales , Anticuerpos Antivirales , COVID-19/inmunología , Humanos , Pulmón/patología , Pulmón/virología , Macaca , Células B de Memoria , Seroconversión
12.
Front Microbiol ; 12: 694897, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305860

RESUMEN

Recently, newly emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been continuously reported worldwide. However, the precise evaluation of SARS-CoV-2 microevolution in host is very limited because the exact genetic information of infected virus could not be acquired in human researches. In this report, we performed deep sequencing for seed virus and SARS-CoV-2 isolated in eight cynomolgus and rhesus macaques at 3 days postinoculation and evaluated single-nucleotide polymorphisms (SNPs) in SARS-CoV-2 by variant analysis. A total of 69 single-nucleotide variants (SNVs) were present in the 5'-untranslated region (UTR), 3'-UTR, ORF1ab, S, ORF3a, ORF8, and N genes of the seed virus passaged in VERO cells. Between those present on the seed virus and those on each SARS-CoV-2 isolated from the lungs of the macaques, a total of 29 variants was identified in 4 coding proteins (ORF1ab, S, ORF3a, and N) and non-coding regions (5'- and 3'-UTR). Variant number was significantly different according to individuals and ranged from 2 to 11. Moreover, the average major frequency variation was identified in six sites between the cynomolgus monkeys and rhesus macaques. As with diverse SNPs in SARS-CoV-2, the values of viral titers in lungs were significantly different according to individuals and species. Our study first revealed that the genomes of SARS-CoV-2 differ according to individuals and species despite infection of the identical virus in non-human primates (NHPs). These results are important for the interpretation of longitudinal studies evaluating the evolution of the SARS-CoV-2 in human beings and development of new diagnostics, vaccine, and therapeutics targeting SARS-CoV-2.

13.
Sci Adv ; 7(22)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34049881

RESUMEN

Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas Recombinantes de Fusión/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Toxoide Tetánico/inmunología , Animales , COVID-19/genética , COVID-19/inmunología , Vacunas contra la COVID-19/genética , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus/genética , Femenino , Macaca fascicularis , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Dominios Proteicos , Ratas , Proteínas Recombinantes de Fusión/genética , SARS-CoV-2/genética , Células Sf9 , Glicoproteína de la Espiga del Coronavirus/genética , Spodoptera , Toxoide Tetánico/genética , Células Vero
14.
Arch Virol ; 166(4): 1103-1112, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33575893

RESUMEN

Dengue virus (DV) is a mosquito-borne virus that is endemic to many tropical and subtropical areas. Recently, the annual incidence of DV infection has increased worldwide, including in Korea, due to global warming and increased global travel. We therefore sought to characterize the molecular and evolutionary features of DV-1 and DV-4 isolated from Korean overseas travelers. We used phylogenetic analysis based on the full coding region to classify isolates of DV-1 in Korea into genotype I (43251, KP406802), genotype IV (KP406803), and genotype V (KP406801). In addition, we found that strains of DV-4 belonged to genotype I (KP406806) and genotype II (43257). Evidence of positive selection in DV-1 strains was identified in the C, prM, NS2A, and NS5 proteins, whereas DV-4 showed positive selection only in the non-structural proteins NS2A, NS3, and NS5. The substitution rates per site per year were 5.58 × 10-4 and 6.72 × 10-4 for DV-1 and DV-4, respectively, and the time of the most recent common ancestor was determined using the Bayesian skyline coalescent method. In this study, the molecular, phylogenetic, and evolutionary characteristics of Korean DV-1 and DV-4 isolates were evaluated for the first time.


Asunto(s)
Virus del Dengue/genética , Dengue/virología , Evolución Molecular , Viaje , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Dengue/epidemiología , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Genotipo , Humanos , Filogenia , ARN Viral/genética , República de Corea/epidemiología , Selección Genética , Serogrupo , Proteínas Virales/genética
15.
J Infect Dis ; 222(10): 1596-1600, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32745172

RESUMEN

Using a reliable primate model is critical for developing therapeutic advances to treat humans infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we exposed macaques to high titers of SARS-CoV-2 via combined transmission routes. We observed acute interstitial pneumonia with endotheliitis in the lungs of all infected macaques. All macaques had a significant loss of total lymphocytes during infection, which were restored over time. These data show that SARS-CoV-2 causes a coronavirus disease 2019 (COVID-19)-like disease in macaques. This new model could investigate the interaction between SARS-CoV-2 and the immune system to test therapeutic strategies.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/complicaciones , Modelos Animales de Enfermedad , Enfermedades Pulmonares Intersticiales/complicaciones , Linfopenia/complicaciones , Enfermedades de los Monos/virología , Neumonía Viral/complicaciones , Animales , COVID-19 , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Femenino , Enfermedades Pulmonares Intersticiales/patología , Linfopenia/patología , Macaca fascicularis , Macaca mulatta , Masculino , Enfermedades de los Monos/patología , Pandemias , Neumonía Viral/patología , Neumonía Viral/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2
16.
Anaerobe ; 64: 102236, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32623046

RESUMEN

Clostridium perfringens is ubiquitous in the environment and the gastrointestinal tract of warm-blooded animals. While part of the gut microbiome, abnormal growth of C. perfringens causes histotoxic, neurologic, and enteric diseases in a variety of animal species, including humans, due to the production of toxins. There is extremely limited information on C. perfringens infection in non-human primates. Presently, 10 strains were successfully isolated from 126 monkeys and confirmed by molecular and biochemical analyses. All isolates were genotype A based on molecular analysis. Alpha toxin was identified in all isolates. Beta 2 toxin was detected in only three isolates. No other toxins, including enterotoxin, beta, iota, epsilon, and net B toxin, were identified in any isolate. All isolates were highly susceptible to ß-lactam antibiotics. Double hemolysis and lecithinase activity were commonly observed in all strains. Biofilm formation, which can increase antibiotic resistance, was identified in 90% of the isolates. The data are the first report the prevalence and characteristics of C. perfringens isolated from captive cynomolgus monkeys.


Asunto(s)
Toxinas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Clostridium perfringens/efectos de los fármacos , Clostridium perfringens/genética , Farmacorresistencia Bacteriana Múltiple , Macaca fascicularis/microbiología , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/veterinaria , Clostridium perfringens/aislamiento & purificación , ADN Bacteriano/genética , Heces/microbiología , Femenino , Genotipo , Masculino , Filogenia , Prevalencia , ARN Ribosómico 16S/genética , beta-Lactamas/farmacología
17.
Arch Virol ; 165(8): 1739-1748, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32409874

RESUMEN

In Korea, dengue infection has been frequently reported in travelers to tropical and subtropical countries. Global warming increases the probability of autochthonous dengue outbreaks in Korea. In this report, the molecular and evolutionary properties of four dengue virus (DENV) type 2 isolates from Korean overseas travelers were examined. Three of these isolates were classified as Cosmopolitan genotypes and further divided into sublineages 1 (43,253, 43,254) and 2 (43,248), while the other isolate (KBPV-VR29) was related to American genotypes. The variable amino acid motifs related to virulence and replication were identified in the structural and non-structural proteins. A negative selection mechanism was clearly verified in all of the DENV proteins. Potential recombination events were identified in the NS5 protein of the XSBN10 strain. The substitution rate (5.32 × 10-4 substitutions per site) and the time of the most recent common ancestor (TMRCA) for each evolutionary group were determined by the Bayesian skyline coalescent method. This study shows that DENV type 2 strains with distinct phylogenetic, evolutionary, and virulence characteristics have been introduced into Korea by overseas travelers and have the potential to trigger autochthonous dengue outbreaks.


Asunto(s)
Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Sustitución de Aminoácidos/genética , Dengue/virología , Brotes de Enfermedades , Evolución Molecular , Genoma Viral/genética , Genotipo , Humanos , Filogenia , ARN Viral/genética , República de Corea , Serogrupo , Proteínas Virales/genética , Virulencia/genética , Replicación Viral/genética
18.
J Pediatr Surg ; 55(10): 2150-2153, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31677825

RESUMEN

PURPOSE: The aims of this study were to evaluate the need for surgical intervention for patients with recurrent ileocolic intussusception (RICI), especially for multiple recurrences, and to investigate whether early and late recurrence patterns were associated with surgery. METHODS: Patients with ileocolic intussusception (ICI) during the years 2007-2019 were included. Demographic data, recurrences, and outcomes were analyzed. Early RICI was defined as recurrence within 48 h. RESULTS: Overall, 604 episodes of ICI were confirmed in 491 patients. The recurrence rate was 13.8%, with 113 episodes in 68 patients. There were no statistically significant differences in age, reduction success rate, operation, or pathological lead points (PLPs) between the recurrence and non-recurrence groups. There was no significant association between the number of recurrences and the presence of a PLP or between the number of recurrences and whether the recurrences were early or late. The presence of PLPs was not significantly associated with age or recurrence, but the reduction success rate was significantly lower (P < 0.001). CONCLUSIONS: Each recurrence should be managed as a first episode, regardless of early or late recurrence. Operative reduction should be considered when nonoperative reduction fails, a PLP is suspected, or there are signs of peritonitis. TYPE OF STUDY: Treatment Study. LEVEL OF EVIDENCE: Level III.


Asunto(s)
Enfermedades del Íleon/terapia , Intususcepción/terapia , Niño , Preescolar , Enema , Femenino , Humanos , Enfermedades del Íleon/diagnóstico por imagen , Enfermedades del Íleon/cirugía , Lactante , Intususcepción/diagnóstico por imagen , Intususcepción/cirugía , Masculino , Recurrencia , Estudios Retrospectivos , Factores de Tiempo
19.
J Med Primatol ; 49(1): 56-59, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31642533

RESUMEN

Chronic inflammatory enteric diseases occur commonly in humans and animals, especially in captive bred macaques. However, information about the etiology of idiopathic chronic inflammatory diarrhea in cynomolgus monkeys is limited. In this paper, we reported the unusual case of idiopathic chronic diarrhea in a captive cynomolgus monkey based on microbial, imaging, and microbiome examinations.


Asunto(s)
Diarrea/veterinaria , Disbiosis/veterinaria , Macaca fascicularis , Enfermedades de los Monos/etiología , Animales , Enfermedad Crónica/veterinaria , Diarrea/complicaciones , Diarrea/etiología , Diarrea/inmunología , Disbiosis/complicaciones , Disbiosis/etiología , Disbiosis/inmunología , Femenino , Enfermedades de los Monos/inmunología
20.
Exp Neurobiol ; 28(4): 458-473, 2019 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31495075

RESUMEN

The function of microglia/macrophages after ischemic stroke is poorly understood. This study examines the role of microglia/macrophages in the focal infarct area after transient middle cerebral artery occlusion (MCAO) in rhesus monkeys. We measured infarct volume and neurological function by magnetic resonance imaging (MRI) and non-human primate stroke scale (NHPSS), respectively, to assess temporal changes following MCAO. Activated phagocytic microglia/macrophages were examined by immunohistochemistry in post-mortem brains (n=6 MCAO, n=2 controls) at 3 and 24 hours (acute stage), 2 and 4 weeks (subacute stage), and 4, and 20 months (chronic stage) following MCAO. We found that the infarct volume progressively decreased between 1 and 4 weeks following MCAO, in parallel with the neurological recovery. Greater presence of cluster of differentiation 68 (CD68)-expressing microglia/macrophages was detected in the infarct lesion in the subacute and chronic stage, compared to the acute stage. Surprisingly, 98~99% of transforming growth factor beta (TGFß) was found co-localized with CD68-expressing cells. CD68-expressing microglia/macrophages, rather than CD206+ cells, may exert anti-inflammatory effects by secreting TGFß after the subacute stage of ischemic stroke. CD68+ microglia/macrophages can therefore be used as a potential therapeutic target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...