Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38613745

RESUMEN

BACKGROUND: Cancer screening is effective in reducing the burden of breast, cervical, and colorectal cancers, but not all communities have appropriate access to these services. In this study, we aimed to identify under-resourced communities by assessing the association between the Social Vulnerability Index (SVI) with screening rates for breast, cervical, and colorectal cancers in ZIP-code tabulation areas (ZCTAs) in Rhode Island. METHODS: This study leveraged deidentified health insurance claims data from HealthFacts RI, the state's all-payer claims database, to calculate screening rates for breast, cervical, and colorectal cancers using Healthcare Effectiveness Data and Information Set measures. We used spatial autoregressive Tobit models to assess the association between the SVI, its four domains, and its 15 component variables with screening rates in 2019, accounting for spatial dependencies. RESULTS: In 2019, 73.2, 65.0, and 66.1% of eligible individuals were screened for breast, cervical, and colorectal cancer, respectively. For every 1-unit increase in the SVI, screening rates for breast and colorectal cancer were lower by 0.07% (95% CI 0.01-0.08%) and 0.08% (95% CI 0.02-0.15%), respectively. With higher scores on the SVI's socioeconomic domain, screening rates for all three types of cancers were lower. CONCLUSION: The SVI, especially its socioeconomic domain, is a useful tool for identifying areas that are under-served by current efforts to expand access to screening for breast, cervical, and colorectal cancer. These areas should be prioritized for new place-based partnerships that address barriers to screening at the individual and community level.

2.
Front Mol Biosci ; 10: 1175889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152896

RESUMEN

The BipA protein is a universally conserved GTPase in bacterial species and is structurally similar to translational GTPases. Despite its wide distribution, BipA is dispensable for growth under optimal growth conditions but is required under stress conditions. In particular, bipA-deleted cells (ESC19) have been shown to display a variety of phenotypic changes in ribosome assembly, capsule production, lipopolysaccharide (LPS) synthesis, biofilm formation, and motility at low temperature, suggesting its global regulatory roles in cold adaptation. Here, through genomic library screening, we found a suppressor clone containing nhaR, which encodes a Na+-responsive LysR-type transcriptional regulator and whose gene product partially restored the growth of strain ESC19 at 20°C. The suppressed cells showed slightly reduced capsule production and improved biofilm-forming ability at 20°C, whereas the defects in the LPS core and swimming motility were not restored but aggravated by overexpression of nhaR. Notably, the overexpression partially alleviated the defects in 50S ribosomal subunit assembly and rRNA processing of ESC19 cells by enhancing the overall transcription of rRNA. Electrophoretic mobility shift assay revealed the association of NhaR with the promoter of seven rrn operons, suggesting that NhaR directly regulates rRNA transcription in ESC19 at 20°C. The suppressive effects of NhaR on ribosomes, capsules, and LPS were dependent on its DNA-binding activity, implying that NhaR might be a transcriptional factor involved in regulating these genes at 20°C. Furthermore, we found that BipA may be involved in adaptation to salt stress, designating BipA as a global stress-responsive regulator, as the deletion of bipA led to growth defects at 37°C and high Na+ concentrations without ribosomal defects.

3.
Sensors (Basel) ; 23(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36991760

RESUMEN

This manuscript presents a self-interferometric phase analysis technique for sea surface observation using a single scatterometer system. The self-interferometric phase is proposed to complement the imprecise analysis results due to the very meager signal strength measured at a high incident angle of more than 30°, which is a vulnerability of the existing analysis method using the Doppler frequency based on the backscattered signal strength. Moreover, compared to conventional interferometry, it is characterized by the phase-based analysis using consecutive signals from a single scatterometer system without any auxiliary system or channel. To apply the interferometric signal process on the moving sea surface observation, it is necessary to secure a reference target; however, this is hard to solve in practice. Hence, we adopted the back-projection algorithm to project the radar signals onto a fixed reference position above the sea surface, where the theoretical model for extracting the self-interferometric phase was derived from the radar-received signal model applying the back-projection algorithm. The observation performance of the proposed method was verified using the raw data collected at the Ieodo Ocean Research Station in Republic of Korea. In the observation result for wind velocity at the high incident angles of 40° and 50°, the self-interferometric phase analysis technique shows a better performance of a correlation coefficient of more than about 0.779 and an RMSE (root-mean-square error) of about 1.69 m/s compared to the existing method of a correlation coefficient of less than 0.62 and RMSE of more than 2.46 m/s.

4.
Paleoceanogr Paleoclimatol ; 37(7): e2022PA004433, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36247355

RESUMEN

Ice loss in the Southern Hemisphere has been greatest over the past 30 years in West Antarctica. The high sensitivity of this region to climate change has motivated geologists to examine marine sedimentary records for evidence of past episodes of West Antarctic Ice Sheet (WAIS) instability. Sediments accumulating in the Scotia Sea are useful to examine for this purpose because they receive iceberg-rafted debris (IBRD) sourced from the Pacific- and Atlantic-facing sectors of West Antarctica. Here we report on the sedimentology and provenance of the oldest of three cm-scale coarse-grained layers recovered from this sea at International Ocean Discovery Program Site U1538. These layers are preserved in opal-rich sediments deposited ∼1.2 Ma during a relatively warm regional climate. Our microCT-based analysis of the layer's in-situ fabric confirms its ice-rafted origin. We further infer that it is the product of an intense but short-lived episode of IBRD deposition. Based on the petrography of its sand fraction and the Phanerozoic 40Ar/39Ar ages of hornblende and mica it contains, we conclude that the IBRD it contains was likely sourced from the Weddell Sea and/or Amundsen Sea embayment(s) of West Antarctica. We attribute the high concentrations of IBRD in these layers to "dirty" icebergs calved from the WAIS following its retreat inland from its modern grounding line. These layers also sit at the top of a ∼366-m thick Pliocene and early Pleistocene sequence that is much more dropstone-rich than its overlying sediments. We speculate this fact may reflect that WAIS mass-balance was highly dynamic during the ∼41-kyr (inter)glacial world.

5.
Nat Commun ; 13(1): 5787, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184671

RESUMEN

Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.


Asunto(s)
Diatomeas , Regiones Antárticas , ADN Antiguo , Diatomeas/genética , Ecosistema , Eucariontes , Sedimentos Geológicos
6.
PLoS One ; 17(6): e0270484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35771850

RESUMEN

The aim of this study was to investigate whether individualized low-intensity exercise (ILIE) within the recovery domain before lactate threshold 1 (LT 1) improves energetic recovery and general endurance capacity in professional soccer players. Twenty-four professional soccer players (age: 24.53 ± 4.85 years, height: 180 ± 6.30 cm, body mass: 75.86 ± 8.01 kg, body fat: 12.19 ± 2.69%) participated in the study (n = 24). The 1-h ILIE intervention involved 27 jogging sessions spanning nine weeks and jogging speed corresponding to 72% of LT 1 (7.15 ± 0.95 km∙h-1). Pre-ILIE and post-ILIE LT testing variables measured within 9 weeks included blood lactate concentrations (La-) and heart rate (HR) at specific exercise intensities during ILIE LT test. The jogging/running speeds (S), delta (Δ) S, HR, and ΔHR were measured at 1.5, 2.0, 3.0, and 4.0 mmol∙L-1 La-, respectively. Values of La- and HR at the same exercise intensities (5.4-16.2 km∙h-1) in the post-ILIE LT test compared with pre-ILIE LT test were significantly decreased (P < 0.05 and P < 0.01, respectively). Furthermore, S at all specific La- levels (1.5, 2.0, 3.0, and 4.0) were significantly increased, while HR at 2.0, 3.0, and 4.0 La- decreased significantly (P < 0.05 and P < 0.01, respectively). Low to moderate positive correlations were observed between ΔS and ΔHR at 1.5 and 2.0 La- (r = 0.52 and r = 0.40, respectively). The nine-week ILIE improved energy recovery and general endurance of professional soccer players. This relates to repeated high-intensity intermittent sprints during the 90-min soccer game.


Asunto(s)
Rendimiento Atlético , Carrera , Fútbol , Adulto , Rendimiento Atlético/fisiología , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Humanos , Ácido Láctico , Carrera/fisiología , Fútbol/fisiología , Adulto Joven
7.
Nat Commun ; 13(1): 2044, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440628

RESUMEN

The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia. Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced bottom-water export and Weddell Gyre dynamics, which helped lower atmospheric CO2 levels.


Asunto(s)
Polvo , Agua de Mar , Regiones Antárticas , Atmósfera , Polvo/análisis , Océanos y Mares
8.
Sensors (Basel) ; 22(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458877

RESUMEN

A multifunctional scatterometer system and optimized radar signal processing for simultaneous observation of various physical oceanographic parameters are described in this paper. Existing observation methods with microwave remote sensing techniques generally use several separate systems such as scatterometer, altimeter, and Doppler radar for sea surface monitoring, which are inefficient in system operation and cross-analysis of each observation data. To improve this point, we integrated separate measurement functions into a single observation system by adding a measurement function of Doppler frequency to the existing system. So it enables to simultaneously measure the range and polarimetric responses of backscattering as well as movements of the sea surface. Here, the simultaneous measurement function of Doppler frequency was implemented by sampling an FMCW (frequency modulated continuous wave) radar signal as 2D raw data consisting of fast- and slow-time samples, i.e., the range and backscattering of radar target signals are analyzed from the fast-time samples while the Doppler frequency by the radar target's movement extracts from the slow-time samples. Through the Fourier transformed-based range-Doppler signal process, distance (R), backscattering (σ°), and Doppler frequency (fD) are sequentially extracted from the 2D raw data, and a correlation to the physical oceanographic parameters is analyzed. Operability of the proposed system was examed through total 3 times of field campaigns from June 2017 to August 2020 and the observation data retrieved by the radar measurement data (R, σ°, fD) was also cross-analyzed with in-situ data: e.g., tide, significant wave height, and wind speed and direction. Differences in the comparative results as an observational accuracy are as follows. Tidal level (Root Mean Square Error 0.169 m (R)), significant wave height (RMSE 0.127 m (R), 0.362 m (σ°)), wind speed (RMSE 1.880 m/s (fD), 2.094 m/s (σ°)) and direction (18.84° (fD)).

9.
J Microbiol ; 60(2): 192-206, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35102526

RESUMEN

Toxin-antitoxin (TA) systems are growth-controlling genetic elements consisting of an intracellular toxin protein and its cognate antitoxin. TA systems have been spread among microbial genomes through horizontal gene transfer and are now prevalent in most bacterial and archaeal genomes. Under normal growth conditions, antitoxins tightly counteract the activity of the toxins. Upon stresses, antitoxins are inactivated, releasing activated toxins, which induce growth arrest or cell death. In this study, among nine functional TA modules in Bosea sp. PAMC 26642 living in Arctic lichen, we investigated the functionality of BoHigBA2. BohigBA2 is located close to a genomic island and adjacent to flagellar gene clusters. The expression of BohigB2 induced the inhibition of E. coli growth at 37°C, which was more manifest at 18°C, and this growth defect was reversed when BohigA2 was co-expressed, suggesting that this BoHigBA2 module might be an active TA module in Bosea sp. PAMC 26642. Live/dead staining and viable count analyses revealed that the BoHigB2 toxin had a bactericidal effect, causing cell death. Furthermore, we demonstrated that BoHigB2 possessed mRNA-specific ribonuclease activity on various mRNAs and cleaved only mRNAs being translated, which might impede overall translation and consequently lead to cell death. Our study provides the insight to understand the cold adaptation of Bosea sp. PAMC 26642 living in the Arctic.


Asunto(s)
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Bradyrhizobiaceae/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Regiones Árticas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Familia de Multigenes , ARN Mensajero/metabolismo
11.
Biochem Biophys Res Commun ; 587: 119-125, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34871999

RESUMEN

Abscisic acid (ABA) plays an important role in seed germination, stomatal closure, and seedling growth inhibition in plants. Among downstream genes whose expression levels are regulated by AFA1 (Arabidopsis F-box Protein Hypersensitive to ABA 1), one gene, AtHAD1 upregulated by ABA was selected from Arabidopsis. AtHAD1 was induced by drought and salt stresses as well as by ABA and was found in dry seeds. Its loss-of-function mutants exhibited increased ABA-sensitivity in germination, seedling growth, and stomatal closure. In addition, the mutants displayed a lower water loss rate and higher survival rate under drought stress than the wild-type plants, indicating that a loss of AtHAD1 leads to enhanced drought tolerance. These results show that AtHAD1 has an inhibitory role in the ABA response and ABA-mediated drought tolerance. The expression levels of several ABA-responsive genes in athad1 were higher than those in the wild-type under the ABA treatment, suggesting that AtHAD1, as a negative regulator in the ABA response, could be associated with the downregulation of the ABA-responsive genes. The phosphatase assay showed that AtHAD1 exhibits phosphatase activity. Monitoring of the subcellular localization of GFP-fused AtHAD1 proteins indicated that AtHAD1 exists in the nucleus and cytoplasm. Overall, this study shows that Arabidopsis HAD1 as an intracellular phosphatase negatively functions in the ABA-mediated cellular responses. This research could serve as a research basis to understand the functional link between ABA signaling and the regulation process of the cellular phosphate level.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/genética , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Abscísico/metabolismo , Adaptación Fisiológica/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Germinación/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Salinidad , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Semillas/metabolismo , Transducción de Señal , Estrés Fisiológico
12.
Physiol Plant ; 173(4): 2376-2389, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34687457

RESUMEN

ABA is a phytohormone involved in diverse plant events such as seed germination and drought response. An F-box protein functions as a substrate receptor of the SCF complex and is responsible for ubiquitination of target proteins, triggering their subsequent degradation mediated by ubiquitin proteasome system. Here, we have isolated a gene named ARABIDOPSIS F-BOX PROTEIN HYPERSENSITIVE TO ABA 1 (AFA1) that was upregulated by ABA. AFA1 interacted with adaptor proteins of the SCF complex, implying its role as a substrate receptor of the complex. Its loss of function mutants, afa1 seedlings, exhibited ABA-hypersensitivity, including delayed germination in the presence of ABA. Moreover, loss of AFA1 led to increased drought tolerance in adult plants. Microarray data with ABA treatments indicated that 129 and 219 genes were upregulated or downregulated, respectively, by more than three times in afa1 relative to the wild type. Among the upregulated genes in afa1, the expression of 28.7% was induced by more than three times in the presence of ABA, while only 9.3% was repressed to the same extent. These data indicate that AFA1 is involved in the downregulation of many ABA-inducible genes, in accordance with the ABA-hypersensitive phenotype of afa1. Epistasis analysis showed that AFA1 could play a role upstream of ABI4 and ABI5 in the ABA signaling for germination inhibition. Collectively, our findings suggest that AFA1 is a novel F-box protein that negatively regulates ABA signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Mutación , Semillas/metabolismo
13.
J Bacteriol ; 203(23): e0040221, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34516281

RESUMEN

Mycobacterium smegmatis has two isocitrate lyase (ICL) isozymes (MSMEG_0911 and MSMEG_3706). We demonstrated that ICL1 (MSMEG_0911) is the predominantly expressed ICL in M. smegmatis and plays a major role in growth on acetate or fatty acid as the sole carbon and energy source. Expression of the icl1 gene in M. smegmatis was demonstrated to be strongly upregulated during growth on acetate relative to that in M. smegmatis grown on glucose. Expression of icl1 was shown to be positively regulated by the RamB activator, and three RamB-binding sites (RamBS1, RamBS2, and RamBS3) were identified in the upstream region of icl1 using DNase I footprinting analysis. Succinyl coenzyme A (succinyl-CoA) was shown to increase the affinity of binding of RamB to its binding sites and enable RamB to bind to RamBS2, which is the most important site for RamB-mediated induction of icl1 expression. These results suggest that succinyl-CoA serves as a coinducer molecule for RamB. Our study also showed that cAMP receptor protein (Crp1; MSMEG_6189) represses icl1 expression in M. smegmatis grown in the presence of glucose. Therefore, the strong induction of icl1 expression during growth on acetate as the sole carbon source relative to the weak expression of icl1 during growth on glucose is likely to result from combined effects of RamB-mediated induction of icl1 in the presence of acetate and Crp-mediated repression of icl1 in the presence of glucose. IMPORTANCE Carbon flux through the glyoxylate shunt has been suggested to affect virulence, persistence, and antibiotic resistance of Mycobacterium tuberculosis. Therefore, it is important to understand the precise mechanism underlying the regulation of the icl gene encoding the key enzyme of the glyoxylate shunt. Using Mycobacterium smegmatis, this study revealed the regulation mechanism underlying induction of icl1 expression in M. smegmatis when the glyoxylate shunt is required. The conservation of the cis- and trans-acting regulatory elements related to icl1 regulation in both M. smegmatis and M. tuberculosis implies that a similar regulatory mechanism operates for the regulation of icl1 expression in M. tuberculosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Isocitratoliasa/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/genética , Ácidos Grasos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Isocitratoliasa/genética , Isoenzimas , Mycobacterium smegmatis/genética
14.
RNA ; 27(11): 1374-1389, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34429367

RESUMEN

Toxin-antitoxin (TA) systems are genetic modules composed of a toxin interfering with cellular processes and its cognate antitoxin, which counteracts the activity of the toxin. TA modules are widespread in bacterial and archaeal genomes. It has been suggested that TA modules participate in the adaptation of prokaryotes to unfavorable conditions. The Bosea sp. PAMC 26642 used in this study was isolated from the Arctic lichen Stereocaulon sp. There are 12 putative type II TA loci in the genome of Bosea sp. PAMC 26642. Of these, nine functional TA systems have been shown to be toxic in Escherichia coli The toxin inhibits growth, but this inhibition is reversed when the cognate antitoxin genes are coexpressed, indicating that these putative TA loci were bona fide TA modules. Only the BoVapC1 (AXW83_01405) toxin, a homolog of VapC, showed growth inhibition specific to low temperatures, which was recovered by the coexpression of BoVapB1 (AXW83_01400). Microscopic observation and growth monitoring revealed that the BoVapC1 toxin had bacteriostatic effects on the growth of E. coli and induced morphological changes. Quantitative real time polymerase chain reaction and northern blotting analyses showed that the BoVapC1 toxin had a ribonuclease activity on the initiator tRNAfMet, implying that degradation of tRNAfMet might trigger growth arrest in E. coli Furthermore, the BoVapBC1 system was found to contribute to survival against prolonged exposure at 4°C. This is the first study to identify the function of TA systems in cold adaptation.


Asunto(s)
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Bradyrhizobiaceae/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , ARN de Transferencia de Metionina/metabolismo , Sistemas Toxina-Antitoxina/genética , Antitoxinas/genética , Proteínas Bacterianas , Toxinas Bacterianas/genética , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/aislamiento & purificación , Bradyrhizobiaceae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Líquenes/fisiología , Operón , Regiones Promotoras Genéticas
15.
Biomedicines ; 9(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203399

RESUMEN

An enzyme mixture (EM) of glucose oxidase, glucosyl transferase, and fructosyl transferase can regulate glucose absorption into the body by converting carbohydrates in food to indigestible oligosaccharides. We evaluated the antidiabetic effects of repeated oral administration of EM in db/db mice. Seven-week-old db/db mice were divided into control, voglibose, and EM groups. Drugs were administered orally mixed with limited feed for one month. Glucose levels were measured every week. A meal tolerance test was conducted after overnight fasting, before the mice were sacrificed. There were no differences in body weight or food intake between the groups. EM treatment reduced blood glucose levels compared with those in the control group. Blood glucose levels during the meal tolerance test were significantly lower in the EM group than those in the control group. A significant decrease in triglyceride level and a tendency for decreased low-density lipoprotein were observed in the EM group compared with in the control group. The Bacteroidetes-to-Firmicutes ratio was higher in the EM group than that in the control group. EM may be useful for people at risk of hyperglycemia or diabetes who need to safely regulate their blood glucose levels. EM may also improve lipid and gut microbiota profiles.

16.
J Microbiol ; 59(2): 186-201, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33527318

RESUMEN

In prokaryotes, toxin-antitoxin (TA) systems are commonly found. They likely reflect the adaptation of pathogenic bacteria or extremophiles to various unfavorable environments by slowing their growth rate. Genomic analysis of the extremophile Deinococcus radiodurans R1 revealed the presence of eight type II TA systems, including the genes dr0417, dr0660, dr1530, dr0690, and dr1807. Expression of these toxin genes led to inhibition of Escherichia coli growth, whereas their antidote antitoxins were able to recover the growth defect. Remarkably, Dr0417 (DrMazF) showed endoribonuclease activity toward rRNAs as well as mRNAs, as determined by in vivo and in vitro RNA cleavage assays, and this activity was inhibited by Dr0416 (DrMazE). It was also found that the expression of dr0416-0417 module is directly regulated by the DrMazE-MazF complex. Furthermore, this TA module was induced under stress conditions and plays an important role in survival. To understand the regulatory mechanism at the molecular level, we determined the first high-resolution structures of DrMazF alone and of the DrMazE-MazF complex. In contrast with the hetero-hexameric state of typical MazE-MazF complexes found in other species, DrMazE-MazF crystal structure consists of a hetero-trimer, with the DNA-binding domain of DrMazE undergoing self-cleavage at the flexible linker loop. Our structure revealed that the unique residue R54 provides an additional positive charge to the substrate-binding pocket of DrMazF, its mutation significantly affects the endonuclease activity. Thus, our work reports the unique structural and biochemical features of the DrMazE-MazF system.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Deinococcus/metabolismo , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Deinococcus/química , Deinococcus/genética , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Sistemas Toxina-Antitoxina
17.
Sensors (Basel) ; 20(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352706

RESUMEN

A sea surface imaging technique for an emergency response using a ready-made frequency modulated continuous wave-synthetic aperture radar (FMCW SAR) system and its experimental results are described in this paper. The optimal range of radiowave incidence angle for sea surface imaging was analyzed by a theoretical scattering model and measurement data, and it was properly applied to the FMCW SAR system by readjusting the delayed-dechirp process. Raw data acquired through flight experiments were reconstructed to SAR image by the range-doppler algorithm. To verify the performance of the reconstructed sea surface image, dual-channel images collected by the configuration of the along-track interferometry were used, and then performance indicators such as signal attenuation, coherence, and phase difference were analyzed. Through this experimental study, it was confirmed that the ready-made FMCW SAR system without a function of the incident angle control can also conduct limited missions for maritime observation. It is possible to be an alternative resource for emergency response, in which the cases are requiring urgent maritime disaster detection and analysis.

18.
Front Microbiol ; 11: 588487, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304334

RESUMEN

The partner switching system (PSS) of the SigF regulatory pathway in Mycobacterium smegmatis has been previously demonstrated to include the anti-sigma factor RsbW (MSMEG_1803) and two anti-sigma factor antagonists RsfA and RsfB. In this study, we further characterized two additional RsbW homologs and revealed the distinct roles of three RsbW homologs [RsbW1 (MSMEG_1803), RsbW2 (MSMEG_6129), and RsbW3 (MSMEG_1787)] in the SigF PSS. RsbW1 and RsbW2 serve as the anti-sigma factor of SigF and the protein kinase phosphorylating RsfB, respectively, while RsbW3 functions as an anti-SigF antagonist through its protein interaction with RsbW1. Using relevant mutant strains, RsfB was demonstrated to be the major anti-SigF antagonist in M. smegmatis. The phosphorylation state of Ser-63 was shown to determine the functionality of RsfB as an anti-SigF antagonist. RsbW2 was demonstrated to be the only protein kinase that phosphorylates RsfB in M. smegmatis. Phosphorylation of Ser-63 inactivates RsfB to render it unable to interact with RsbW1. Our comparative RNA sequencing analysis of the wild-type strain of M. smegmatis and its isogenic Δaa 3 mutant strain lacking the aa 3 cytochrome c oxidase of the respiratory electron transport chain revealed that expression of the SigF regulon is strongly induced under respiration-inhibitory conditions in an RsfB-dependent way.

19.
Front Microbiol ; 11: 597515, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240252

RESUMEN

The BipA (BPI-inducible protein A) protein is ubiquitously conserved in various bacterial species and belongs to the translational GTPase family. Interestingly, the function of Escherichia coli BipA is not essential for cell growth under normal growth conditions. However, cultivation of bipA-deleted cells at 20°C leads to cold-sensitive growth defect and several phenotypic changes in ribosome assembly, capsule production, and motility, suggesting its global regulatory roles. Previously, our genomic library screening revealed that the overexpressed ribosomal protein (r-protein) L20 partially suppressed cold-sensitive growth defect by resolving the ribosomal abnormality in bipA-deleted cells at low temperature. Here, we explored another genomic library clone containing yebC, which encodes a predicted transcriptional factor that is not directly associated with ribosome biogenesis. Interestingly, overexpression of yebC in bipA-deleted cells diminished capsule synthesis and partially restored lipopolysaccharide (LPS) core maturation at a low temperature without resolving defects in ribosome assembly or motility, indicating that YebC may be specifically involved in the regulation of exopolysaccharide and LPS core synthesis. In this study, we collectively investigated the impacts of bipA-deletion on E. coli capsule, LPS, biofilm formation, and motility and revealed novel roles of YebC in extracellular polysaccharide production and LPS core synthesis at low temperature using this mutant strain. Furthermore, our findings suggest that ribosomal defects as well as increased capsule synthesis, and changes in LPS composition may contribute independently to the cold-sensitivity of bipA-deleted cells, implying multiple regulatory roles of BipA.

20.
Nat Microbiol ; 4(3): 515-526, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30718849

RESUMEN

It is generally assumed that each organism has evolved to possess a unique ribosomal RNA (rRNA) species optimal for its physiological needs. However, some organisms express divergent rRNAs, the functional roles of which remain unknown. Here, we show that ribosomes containing the most variable rRNAs, encoded by the rrnI operon (herein designated as I-ribosomes), direct the preferential translation of a subset of mRNAs in Vibrio vulnificus, enabling the rapid adaptation of bacteria to temperature and nutrient shifts. In addition, genetic and functional analyses of I-ribosomes and target mRNAs suggest that both I-ribosomal subunits are required for the preferential translation of specific mRNAs, the Shine-Dalgarno sequences of which do not play a critical role in I-ribosome binding. This study identifies genome-encoded divergent rRNAs as regulators of gene expression at the ribosome level, providing an additional level of regulation of gene expression in bacteria in response to environmental changes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , ARN Mensajero/genética , ARN Ribosómico/genética , Ribosomas/genética , Adaptación Fisiológica/genética , Animales , Femenino , Respuesta al Choque Térmico , Ratones , Ratones Endogámicos ICR , Biosíntesis de Proteínas , Ribosomas/metabolismo , Organismos Libres de Patógenos Específicos , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...