Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(4): pgae125, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38585339

RESUMEN

Yolk-consuming (lecithotrophic) embryos of oviparous animals, such as those of fish, need to make do with the maternally derived yolk. However, in many cases, yolk possesses little carbohydrates and sugars, including glucose, the essential monosaccharide. Interestingly, increases in the glucose content were found in embryos of some teleost fishes; however, the origin of this glucose has been unknown. Unveiling new metabolic strategies in fish embryos has a potential for better aquaculture technologies. In the present study, using zebrafish, we assessed how these embryos obtain the glucose. We employed stable isotope (13C)-labeled substrates and injected them to the zebrafish embryos. Our liquid chromatography-mass spectrometry-based isotope tracking revealed that among all tested substrate, glutamate was most actively metabolized to produce glucose in the zebrafish embryos. Expression analysis for gluconeogenic genes found that many of these were expressed in the yolk syncytial layer (YSL), an extraembryonic tissue found in teleost fishes. Generation 0 (G0) knockout of pck2, a gene encoding the key enzyme for gluconeogenesis from Krebs cycle intermediates, reduced gluconeogenesis from glutamate, suggesting that this gene is responsible for gluconeogenesis from glutamate in the zebrafish embryos. These results showed that teleost YSL undergoes gluconeogenesis, likely contributing to the glucose supplementation to the embryos with limited glucose source. Since many other animal lineages lack YSL, further comparative analysis will be interesting.

2.
3.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047570

RESUMEN

The gills are the major organ for Na+ uptake in teleosts. It was proposed that freshwater (FW) teleosts adopt Na+/H+ exchanger 3 (Nhe3) as the primary transporter for Na+ uptake and Na+-Cl- co-transporter (Ncc) as the backup transporter. However, convincing molecular physiological evidence to support the role of Ncc in branchial Na+ uptake is still lacking due to the limitations of functional assays in the gills. Thus, this study aimed to reveal the role of branchial Ncc in Na+ uptake with an in vivo detection platform (scanning ion-selective electrode technique, SIET) that has been recently established in fish gills. First, we identified that Ncc2-expressing cells in zebrafish gills are a specific subtype of ionocyte (NCC ionocytes) by using single-cell transcriptome analysis and immunofluorescence. After a long-term low-Na+ FW exposure, zebrafish increased branchial Ncc2 expression and the number of NCC ionocytes and enhanced gill Na+ uptake capacity. Pharmacological treatments further suggested that Na+ is indeed taken up by Ncc, in addition to Nhe, in the gills. These findings reveal the uptake roles of both branchial Ncc and Nhe under FW and shed light on osmoregulatory physiology in adult fish.


Asunto(s)
Simportadores , Pez Cebra , Animales , Pez Cebra/metabolismo , Simportadores/metabolismo , Transporte Biológico , Transporte Iónico/fisiología , Branquias/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Agua Dulce
4.
J Hazard Mater ; 445: 130539, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502720

RESUMEN

Anthropogenic acidification of water is an on-going environmental disaster for freshwater fishes. Fishes rely on ammonia excretion to eliminate the excess acid and mitigate the harmful effects; however, it remains largely unknown how ammoniagenesis occurs and is coordinated with ammonia excretion upon acidic stress. Medaka (Oryzias latipes) was used to examine the effects of acidic stress on ammonia production and excretion. We reveal an undiscovered ammonia-producing cell type that is rich in glutaminase (GLS) and located adjacent to the ammonia-excreting ionocytes, Na+/H+ exchanger (NHE) cells, in the gills. The gills, comparing with other ammoniagenetic organs, is the quickest to respond to the acidic stress by triggering GLS-dependent ammonia production. The unique division of labor between GLS and NHE cells in the gills allows medaka to simultaneously upregulate GLS activity and ammonia excretion shortly after exposure to acidic environments. Pharmacological experiment with a GLS inhibitor abolished the activated ammonia excretion, further suggesting the essential role of the unique feature in the responses to acidic stress. Our study shades light on a novel physiological mechanism to timely and efficiently mitigate adverse effects of acidification, providing a new way to assess the impact of on-going environmental acidification on fish.


Asunto(s)
Oryzias , Animales , Oryzias/metabolismo , Amoníaco/toxicidad , Amoníaco/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Agua Dulce , Branquias/metabolismo
5.
Front Physiol ; 13: 947958, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277196

RESUMEN

Understanding Na+ uptake mechanisms in vertebrates has been a research priority since vertebrate ancestors were thought to originate from hyperosmotic marine habitats to the hypoosmotic freshwater system. Given the evolutionary success of osmoregulator teleosts, these freshwater conquerors from the marine habitats are reasonably considered to develop the traits of absorbing Na+ from the Na+-poor circumstances for ionic homeostasis. However, in teleosts, the loss of epithelial Na+ channel (ENaC) has long been a mystery and an issue under debate in the evolution of vertebrates. In this study, we evaluate the idea that energetic efficiency in teleosts may have been improved by selection for ENaC loss and an evolved energy-saving alternative, the Na+/H+ exchangers (NHE3)-mediated Na+ uptake/NH4 + excretion machinery. The present study approaches this question from the lamprey, a pioneer invader of freshwater habitats, initially developed ENaC-mediated Na+ uptake driven by energy-consuming apical H+-ATPase (VHA) in the gills, similar to amphibian skin and external gills. Later, teleosts may have intensified ammonotelism to generate larger NH4 + outward gradients that facilitate NHE3-mediated Na+ uptake against an unfavorable Na+ gradient in freshwater without consuming additional ATP. Therefore, this study provides a fresh starting point for expanding our understanding of vertebrate ion regulation and environmental adaptation within the framework of the energy constraint concept.

6.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35457237

RESUMEN

Molecular and physiological analyses in ionoregulatory organs (e.g., adult gills and embryonic skin) are essential for studying fish ion regulation. Recent progress in the molecular physiology of fish ion regulation was mostly obtained in embryonic skin; however, studies of ion regulation in adult gills are still elusive and limited because there are no direct methods for in vivo functional assays in the gills. The present study applied the scanning ion-selective electrode technique (SIET) in adult gills to investigate branchial H+-excreting functions in vivo. We removed the opercula from zebrafish and then performed long-term acid acclimation experiments. The results of Western blot and immunofluorescence showed that the protein expression of H+-ATPase (HA) and the number of H+-ATPase-rich ionocytes were increased under acidic situations. The SIET results proved that the H+ excretion capacity is indeed enhanced in the gills acclimated to acidic water. In addition, both HA and Na+/H+ exchanger (Nhe) inhibitors suppressed the branchial H+ excretion capacity, suggesting that H+ is excreted in association with HA and Nhe in zebrafish gills. These results demonstrate that SIET is effective for in vivo detection in fish gills, representing a breakthrough approach for studying the molecular physiology of fish ion regulation.


Asunto(s)
Branquias , Pez Cebra , Aclimatación/fisiología , Ácidos/farmacología , Animales , Branquias/metabolismo , ATPasas de Translocación de Protón/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Pez Cebra/metabolismo
7.
Sci Total Environ ; 806(Pt 2): 150672, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597556

RESUMEN

Relatively warm environments caused by global warming enhance the productivity of aquaculture activities in tropical/subtropical regions; however, the intermittent cold stress (ICS) caused by negative Arctic Oscillation can still result in major economic losses. In contrast to endotherms, ectothermic fishes experience ambient temperature as an abiotic factor that is central to performance and survival. Therefore, the occurrence of extreme temperatures caused by climate change has ignited a surge of scientific interest from ecologists, economists and physiologists. In this study, we test the transgenerational effects of rearing cold-experienced (CE) and cold-naïve (CN) strains of tropical tilapia. Our results show that compared to CN tilapia, the CE strain preferentially converts carbohydrates into lipids in liver at a regular temperature of 27 °C. Besides, at a low temperature of 22 °C, the CE strain exhibits a broader aerobic scope than CN fish, and their metabolite profile suggests a metabolic shift towards the utilization of glutamate derivatives. Therefore, in response to thermal perturbations, this transgenerational metabolic adjustment provides evidence into the adaptive trade-off mechanisms in tropical fish. Nevertheless, global warming may result in less thermal variation each year, and the stabilized ambient temperature may cause tropical tilapia to gradually exhibit lower energy deposits in liver. In addition to those habitants in cold and temperate regions, a lack of cold exposure to multiple generations of fish may decrease the native cold-tolerance traits of subtropical/tropical organisms; this notion has not been previously explored in terms of the biological effects under anthropogenic climate change.


Asunto(s)
Tilapia , Animales , Cambio Climático , Frío , Calentamiento Global , Temperatura
8.
J Endocrinol ; 251(2): 149-159, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34494970

RESUMEN

Estrogen-related receptors (ERRs) are known to function in mammalian kidney as key regulators of ion transport-related genes; however, a comprehensive understanding of the physiological functions of ERRs in vertebrate body fluid ionic homeostasis is still elusive. Here, we used medaka (Oryzias melastigma), a euryhaline teleost, to investigate how ERRs are involved in ion regulation. After transferring medaka from hypertonic seawater to hypotonic freshwater (FW), the mRNA expression levels of errγ2 were highly upregulated, suggesting that Errγ2 may play a crucial role in ion uptake. In situ hybridization showed that errγ2 was specifically expressed in ionocytes, the cells responsible for Na+/Cl- transport. In normal FW, ERRγ2 morpholino knockdown caused reductions in the mRNA expression of Na+/Cl- cotransporter (Ncc), the number of Ncc ionocytes, Na+/Cl- influxes of ionocytes, and whole-body Na+/Cl- contents. In FW with low Na+ and low Cl-, the expression levels of mRNA for Na+/H+ exchanger 3 (Nhe3) and Ncc were both decreased in Errγ2 morphants. Treating embryos with DY131, an agonist of Errγ, increased the whole-body Na+/Cl- contents and ncc mRNA expression in Errγ2 morphants. As such, medaka Errγ2 may control Na+/Cl- uptake by regulating ncc and/or nhe3 mRNA expression and ionocyte number, and these regulatory actions may be subtly adjusted depending on internal and external ion concentrations. These findings not only provide new insights into the underpinning mechanism of actions of ERRs, but also enhance our understanding of their roles in body fluid ionic homeostasis for adaptation to changing environments during vertebrate evolution.


Asunto(s)
Proteínas de Peces/metabolismo , Transporte Iónico , Osmorregulación , Receptores de Estrógenos/metabolismo , Animales , Cloruros/metabolismo , Femenino , Masculino , Oryzias , Sodio/metabolismo
9.
J Comp Physiol B ; 191(5): 855-864, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34274982

RESUMEN

Freshwater fish live in environments where pH levels fluctuate more than those in seawater. During acidic stress, the acid-base balance in these fish is regulated by ionocytes in the gills, which directly contact water and function as an external kidney. In ionocytes, apical acid secretion is largely mediated by H+-ATPase and the sodium/hydrogen exchanger (NHE). Control of this system was previously proposed to depend on the hormone, cortisol, mostly based on studies of zebrafish, a stenohaline fish, which utilize H+-ATPase as the main route for apical acid secretion. However, the role of cortisol is poorly understood in euryhaline fish species that preferentially use NHE as the main transporter. In the present study, we explored the role of cortisol in NHE-mediated acid secretion in medaka larvae. mRNA expression levels of transporters related to acid secretion and cortisol-synthesis enzyme were enhanced by acidic FW treatment (pH 4.5, 2 days) in medaka larvae. Moreover, exogenous cortisol treatment (25 mg/L, 2 days) resulted in upregulation of nhe3 and rhcg1 expression, as well as acid secretion in 7 dpf medaka larvae. In loss-of-function experiments, microinjection of glucocorticoid receptor (GR)2 morpholino (MO) caused reductions in nhe3 and rhcg1 expression and diminished acid secretion, but microinjection of mineralocorticoid receptor (MR) and GR1 MOs did not. Together, these results suggest a conserved action of cortisol and GR2 on fish body fluid acid-base regulation.


Asunto(s)
Oryzias , Animales , Branquias , Hidrocortisona , Larva , Oryzias/genética , Receptores de Glucocorticoides/genética , Pez Cebra
10.
Sci Rep ; 10(1): 11720, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678186

RESUMEN

Shallow hydrothermal vent environments are typically very warm and acidic due to the mixing of ambient seawater with volcanic gasses (> 92% CO2) released through the seafloor making them potential 'natural laboratories' to study long-term adaptations to extreme hypercapnic conditions. Xenograpsus testudinatus, the shallow hydrothermal vent crab, is the sole metazoan inhabitant endemic to vents surrounding Kueishantao Island, Taiwan, where it inhabits waters that are generally pH 6.50 with maximum acidities reported as pH 5.50. This study assessed the acid-base regulatory capacity and the compensatory response of X. testudinatus to investigate its remarkable physiological adaptations. Hemolymph parameters (pH, [HCO3-], [Formula: see text], [NH4+], and major ion compositions) and the whole animal's rates of oxygen consumption and ammonia excretion were measured throughout a 14-day acclimation to pH 6.5 and 5.5. Data revealed that vent crabs are exceptionally strong acid-base regulators capable of maintaining homeostatic pH against extreme hypercapnia (pH 5.50, 24.6 kPa [Formula: see text]) via HCO3-/Cl- exchange, retention and utilization of extracellular ammonia. Intact crabs as well as their isolated perfused gills maintained [Formula: see text]tensions below environmental levels suggesting the gills can excrete CO2 against a hemolymph-directed [Formula: see text] gradient. These specialized physiological mechanisms may be amongst the adaptations required by vent-endemic animals surviving in extreme conditions.


Asunto(s)
Adaptación Fisiológica , Braquiuros/fisiología , Exposición a Riesgos Ambientales/efectos adversos , Hipercapnia/metabolismo , Estrés Fisiológico , Animales , Hemolinfa , Concentración de Iones de Hidrógeno , Hipercapnia/etiología
11.
J Endocrinol ; 246(3): 277-288, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32698133

RESUMEN

Timely adjustment of osmoregulation upon acute salinity stress is essential for the survival of euryhaline fish. This rapid response is thought to be tightly controlled by hormones; however, there are still questions unanswered. In this work, we tested the hypothesis that the endocrine hormone, insulin-like growth factor 1 (Igf1), a slow-acting hormone, is involved in the activation of salt secretion mechanisms in euryhaline medaka (Oryzias melastigma) during acclimation to acute salinity stress. In response to a 30-ppt seawater (SW) challenge, Na+/Cl- secretion was enhanced within 0.5 h, with concomitant organization of ionocyte multicellular complexes and without changes in expression of major transporters. Igf1 receptor inhibitors significantly impair the Na+/Cl- secretion and ionocyte multicellular complex responses without affecting transporter expression. Thus, Igf1 may activate salt secretion as part of the teleost response to acute salinity stress by exerting effects on transporter function and enhancing the formation of ionocyte multicellular complexes. These findings provide new insights into hormonal control of body fluid ionic/osmotic homeostasis during vertebrate evolution.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Cloruro de Sodio/farmacología , Animales , Proteínas de Peces/metabolismo , Factor I del Crecimiento Similar a la Insulina/antagonistas & inhibidores , Oryzias , Salinidad , Estrés Salino , Transducción de Señal/efectos de los fármacos
12.
Int J Mol Sci ; 21(11)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486459

RESUMEN

Arginine vasopressin (Avp) is a conserved pleiotropic hormone that is known to regulate both water reabsorption and ion balance; however, many of the mechanisms underlying its effects remain unclear. Here, we used zebrafish embryos to investigate how Avp modulates ion and acid-base homeostasis. After incubating embryos in double-deionized water for 24 h, avp mRNA expression levels were significantly upregulated. Knockdown of Avp protein expression by an antisense morpholino oligonucleotide (MO) reduced the expression of ionocyte-related genes and downregulated whole-body Cl- content and H+ secretion, while Na+ and Ca2+ levels were not affected. Incubation of Avp antagonist SR49059 also downregulated the mRNA expression of sodium chloride cotransporter 2b (ncc2b), which is a transporter responsible for Cl- uptake. Correspondingly, avp morphants showed lower NCC and H+-ATPase rich (HR) cell numbers, but Na+/K+-ATPase rich (NaR) cell numbers remained unchanged. avp MO also downregulated the numbers of foxi3a- and p63-expressing cells. Finally, the mRNA expression levels of calcitonin gene-related peptide (cgrp) and its receptor, calcitonin receptor-like 1 (crlr1), were downregulated in avp morphants, suggesting that Avp might affect Cgrp and Crlr1 for modulating Cl- balance. Together, our results reveal a molecular/cellular pathway through which Avp regulates ion and acid-base balance, providing new insights into its function.


Asunto(s)
Equilibrio Ácido-Base , Arginina Vasopresina/farmacología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Iones/química , Simportadores del Cloruro de Sodio/metabolismo , Vasopresinas/metabolismo , Animales , Calcio/química , Cloruros/química , ADN Complementario/metabolismo , Regulación hacia Abajo , Electrodos , Homeostasis , Hibridación in Situ , Transporte Iónico , Oligonucleótidos Antisentido/farmacología , ARN Mensajero/metabolismo , Piel/metabolismo , Sodio/química , Pez Cebra , Proteínas de Pez Cebra/genética
13.
Bioessays ; 42(5): e1900161, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32163625

RESUMEN

How vertebrates evolved different traits for acid excretion to maintain body fluid pH homeostasis is largely unknown. The evolution of Na+ /H+  exchanger (NHE)-mediated NH4+ excretion in fishes is reported, and the coevolution with increased ammoniagenesis and accompanying gluconeogenesis is speculated to benefit vertebrates in terms of both internal homeostasis and energy metabolism response to acidic stress. The findings provide new insights into our understanding of the possible adaptation of fishes to progressing global environmental acidification. In human kidney, titratable H+ and NH4+ comprise the two main components of net acid excretion. V-type H+ -ATPase-mediated H+ excretion may have developed in stenohaline lampreys when they initially invaded freshwater from marine habitats, but this trait is lost in most fishes. Instead, increased reliance on NHE-mediated NH4+ excretion is gradually developed and intensified during fish evolution. Further investigations on more species will be needed to support the hypothesis. Also see the video abstract here https://youtu.be/vZuObtfm-34.


Asunto(s)
Amoníaco , Líquidos Corporales , Amoníaco/metabolismo , Animales , Líquidos Corporales/metabolismo , Peces , Branquias/metabolismo , Humanos , Intercambiadores de Sodio-Hidrógeno
14.
Am J Physiol Regul Integr Comp Physiol ; 318(3): R619-R633, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31994899

RESUMEN

In lecithotrophic larvae, egg yolk nutrients are essential for development. Although yolk proteins and lipids are the major nutrient sources for most animal embryos and larvae, the contribution of carbohydrates to development has been less understood. In this study, we assessed glucose and glycogen metabolism in developing Pacific abalone, a marine gastropod mollusc caught and cultured in east Asia. We found that glucose and glycogen content gradually elevated in developing abalone larvae, and coincident expression increases of gluconeogenic genes and glycogen synthase suggested abalone larvae had activated gluconeogenesis and glycogenesis during this stage. At settling, however, glycogen sharply decreased, with concomitant increases in glucose content and expression of Pyg and G6pc, suggesting the settling larvae had enhanced glycogen conversion to glucose. A liquid chromatography-mass spectrometry (LC/MS)-based metabolomic approach that detected intermediates of these pathways further supported active metabolism of glycogen. Immunofluorescence staining and in situ hybridization suggested the digestive gland has an important role as glycogen storage tissue during settlement, while many other tissues also showed a capacity to metabolize glycogen. Finally, inhibition of glycolysis affected survival of the settling veliger larvae, revealing that glucose is, indeed, an important nutrient source in settling larvae. Our results suggest glucose and glycogen are required for proper energy balance in developing abalone and especially impact survival during settling.


Asunto(s)
Gastrópodos/metabolismo , Gluconeogénesis/fisiología , Glucosa/metabolismo , Glucógeno/metabolismo , Animales , Gastrópodos/genética , Glucólisis/fisiología , Espectrometría de Masas/métodos
15.
PLoS Genet ; 15(4): e1008058, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30933982

RESUMEN

In the skin and gill epidermis of fish, ionocytes develop alongside keratinocytes and maintain body fluid ionic homeostasis that is essential for adaptation to environmental fluctuations. It is known that ionocyte progenitors in zebrafish embryos are specified from p63+ epidermal stem cells through a patterning process involving DeltaC (Dlc)-Notch-mediated lateral inhibition, which selects scattered dlc+ cells into the ionocyte progenitor fate. However, mechanisms by which the ionocyte progenitor population is modulated remain unclear. Krüppel-like factor 4 (Klf4) transcription factor was previously implicated in the terminal differentiation of mammalian skin epidermis and is known for its bifunctional regulation of cell proliferation in a tissue context-dependent manner. Here, we report novel roles for zebrafish Klf4 in the ventral ectoderm during embryonic skin development. We found that Klf4 was expressed in p63+ epidermal stem cells of the ventral ectoderm from 90% epiboly onward. Knockdown or knockout of klf4 expression reduced the proliferation rate of p63+ stem cells, resulting in decreased numbers of p63+ stem cells, dlc-p63+ keratinocyte progenitors and dlc+ p63+ ionocyte progenitor cells. These reductions subsequently led to diminished keratinocyte and ionocyte densities and resulted from upregulation of the well-known cell cycle regulators, p53 and cdkn1a/p21. Moreover, mutation analyses of the KLF motif in the dlc promoter, combined with VP16-klf4 or engrailed-klf4 mRNA overexpression analyses, showed that Klf4 can bind the dlc promoter and modulate lateral inhibition by directly repressing dlc expression. This idea was further supported by observing the lateral inhibition outcomes in klf4-overexpressing or knockdown embryos. Overall, our experiments delineate novel roles for zebrafish Klf4 in regulating the ionocyte progenitor population throughout early stem cell stage to initiation of terminal differentiation, which is dependent on Dlc-Notch-mediated lateral inhibition.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Diferenciación Celular , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Branquias/citología , Branquias/embriología , Branquias/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transporte Iónico , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , Receptores Notch/genética , Receptores Notch/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
16.
Gen Comp Endocrinol ; 277: 20-29, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30878350

RESUMEN

Maintenance of internal ionic and acid-base homeostasis is critical for survival in all biological systems. Similar to mammals, aquatic fishes have developed sophisticated homeostatic mechanisms to mitigate metabolic or environmental disruptions in ionic and acid-base status of systemic body fluids via hormone-controlled transport of ions or acid equivalents. The present review summarizes newly discovered actions of several hormones in zebrafish (Danio rerio) and medaka (Oryzias latipes) that have greatly contributed to our overall understanding of ionic/acid-base regulation. For example, isotocin and cortisol were reported to enhance transport of various ions by stimulating the proliferation and/or differentiation of ionocyte progenitors. Meanwhile, stanniocalcin-1, a well-documented hypocalcemic hormone, was found to suppress ionocyte differentiation and thus downregulate secretion of H+ and uptake of Na+ and Cl-. Estrogen-related receptor and calcitonin gene-related peptide also regulate the differentiation of certain types of ionocytes to either stimulate or suppress H+ secretion and Cl- uptake. On the other hand, endothelin and insulin-like growth factor 1 activate the respective secretion of H+ and Na+/Cl through fast actions. These new findings enhance our understanding of how hormones regulate fish ionic and acid-base regulation while further providing new insights into vertebrate evolution, mammalian endocrinology and human disease-related therapeutics.


Asunto(s)
Equilibrio Ácido-Base , Hormonas/metabolismo , Oryzias/metabolismo , Osmorregulación , Pez Cebra/metabolismo , Animales , Modelos Biológicos
17.
Sci Rep ; 8(1): 16855, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442908

RESUMEN

The neuroplastic mechanisms in the fish brain that underlie sex reversal remain unknown. Gonadotropin-releasing hormone 3 (GnRH3) neurons control male reproductive behaviours in Mozambique tilapia and show sexual dimorphism, with males having a greater number of GnRH3 neurons. Treatment with androgens such as 11-ketotestosterone (KT), but not 17ß-estradiol, increases the number of GnRH3 neurons in mature females to a level similar to that observed in mature males. Compared with oestrogen, the effect of androgen on neurogenesis remains less clear. The present study examined the effects of 11-KT, a non-aromatizable androgen, on cellular proliferation, neurogenesis, generation of GnRH3 neurons and expression of cell cycle-related genes in mature females. The number of proliferating cell nuclear antigen-positive cells was increased by 11-KT. Simultaneous injection of bromodeoxyuridine and 11-KT significantly increased the number of newly-generated (newly-proliferated) neurons, but did not affect radial glial cells, and also resulted in newly-generated GnRH3 neurons. Transcriptome analysis showed that 11-KT modulates the expression of genes related to the cell cycle process. These findings suggest that tilapia could serve as a good animal model to elucidate the effects of androgen on adult neurogenesis and the mechanisms for sex reversal in the fish brain.


Asunto(s)
Andrógenos/farmacología , Encéfalo/citología , Encéfalo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Tilapia/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Ventrículos Cerebrales/citología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Procesamiento de Imagen Asistido por Computador , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Testosterona/análogos & derivados , Testosterona/farmacología
18.
Front Physiol ; 9: 1224, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233401

RESUMEN

The body temperatures of teleost species fluctuate following changes in the aquatic environment. As such, decreased water temperature lowers the rates of biochemical reactions and affects many physiological processes, including active transport-dependent ion absorption. Previous studies have focused on the impacts of low temperature on the plasma ion concentrations or membrane transporters in fishes. However, very few in vivo or organism-level studies have been performed to more thoroughly elucidate the process of acclimation to low temperatures. In the present study, we compared the strategies for cold acclimation between stenothermic tilapia and eurythermic goldfish. Whole-body calcium content was more prominently diminished in tilapia than in goldfish after long-term cold exposure. This difference can be attributed to alterations in the transportation parameters for Ca2+ influx, i.e., maximum velocity (Vmax ) and binding affinity (1/Km ). There was also a significant difference in the regulation of Ca2+ efflux between the two fishes. Transcript levels for Ca2+ related transporters, including the Na+/Ca2+ exchanger and epithelial Ca2+ channel, were similarly regulated in both fishes. However, upregulation of plasma membrane Ca2+ATPase expression was more pronounced in goldfish than in tilapia. In addition, enhanced Na+/K+-ATPase abundance, which provides the major driving force for ion absorption, was only detected in tilapia, while upregulated Na+/K+-ATPase activity was only detected in goldfish. Based on the results of the present study, we have found that goldfish and tilapia differentially regulate gill epithelial plasma membrane Ca2+-ATPase (PMCA) expression and Na+/K+-ATPase activity in response to cold environments. These regulatory differences are potentially linked to more effective regulation of Ca2+ influx kinetics and better maintenance of whole body calcium content in goldfish than in tilapia.

19.
Front Physiol ; 9: 649, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29899708

RESUMEN

The calcium-sensing receptor (CaSR) is an extracellular Ca2+ sensor that plays a critical role in maintaining Ca2+ homeostasis in several organs, including the parathyroid gland and kidneys. In this study, through in situ hybridization, the expression of CaSR mRNA was found in the neuromasts of zebrafish larvae. Immunohistochemistry further demonstrated that the CaSR protein was present in neuromast hair cell stereocilia and basolateral membranes. Based on the expression and subcellular localization of the CaSR in hair cells, we hypothesized that the CaSR is expressed in zebrafish lateral-line hair cells to regulate mechanotransducer (MET)-channel-mediated Ca2+ entry. Using the scanning ion-selective electrode technique, MET-channel-mediated Ca2+ influx at the stereocilia of hair cells was measured in intact larvae. Ca2+ influx was suppressed after larvae were pretreated with a CaSR activator (R-568) or high-Ca2+ (HCa) medium. Gene knockdown by using morpholino oligonucleotides decreased CaSR expression in hair cells and eliminated the effects of R-568 and HCa on Ca2+ influx. In addition, we found that treatment with R-568 attenuated neomycin-induced hair cell death. This study is the first to demonstrate that the CaSR is involved in mechanotransduction in zebrafish hair cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...