Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856726

RESUMEN

The catalytic efficacy of the monobipyridyl (η6-para-Cymene)Ru(II) half-metallocene, [(p-Cym)Ru(bpy)Cl]+ was evaluated in both mixed homogeneous (dye + catalyst) and heterogeneous hybrid systems (dye/TiO2/Catalyst) for photochemical CO2 reduction. A series of homogeneous photolysis experiments revealed that the (p-Cym)Ru(II) catalyst engages in two competitive routes for CO2 reduction (CO2 to formate conversion via RuII-hydride vs CO2 to CO conversion through a RuII-COOH intermediate). The conversion activity and product selectivity were notably impacted by the pKa value and the concentration of the proton source added. When a more acidic TEOA additive was introduced, the half-metallocene Ru(II) catalyst leaned toward producing formate through the RuII-H mechanism, with a formate selectivity of 86%. On the other hand, in homogeneous catalysis with TFE additive, the CO2-to-formate conversion through RuII-H was less effective, yielding a more efficient CO2-to-CO conversion with a selectivity of >80% (TONformate of 140 and TONCO of 626 over 48 h). The preference between the two pathways was elucidated through an electrochemical mechanistic study, monitoring the fate of the metal-hydride intermediate. Compared to the homogeneous system, the TiO2-heterogenized (p-Cym)Ru(II) catalyst demonstrated enhanced and enduring performance, attaining TONs of 1000 for CO2-to-CO and 665 for CO2-to-formate.

2.
Anal Chem ; 95(30): 11181-11186, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37468162

RESUMEN

A nanoelectrode with a controllable area was developed using commercial atomic force microscopy and a hydrogel. Although tremendous advantages of small electrodes from micrometer scale down to nanometer scale have been previously reported for a wide range of applications, precise and high-throughput fabrication remains an obstacle. In this work, the set-point feedback current in a modified scanning ionic conductance microscopy system controlled the formation of electrodes with a nanometer-sized area by contact between the boron-doped diamond (BDD) tip and the agarose hydrogel. The modulation of the electroactive area of the BDD-coated nanoelectrode in the hydrogel was successively investigated by the finite element method and cyclic voltammetry with the use of a redox-contained hydrogel. Moreover, this nanoelectrode enables the simultaneous imaging of both the topography and electrochemical activity of a polymeric microparticle embedded in a hydrogel.

3.
Small ; 19(33): e2302158, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37162441

RESUMEN

This work demonstrates the utilization of short-time Fourier transform (STFT), and continuous wavelet transform (CWT) electrochemical impedance spectroscopy (EIS) for time-resolved analysis of stochastic collision events of platinum nanoparticles (NPs) onto gold ultramicroelectrode (UME). The enhanced electrocatalytic activity is observed in both chronoamperometry (CA) and EIS. CA provides the impact moment and rough estimation of the size of NPs. The quantitative information such as charge transfer resistance (Rct ) relevant to the exchange current density of a single Pt NP is estimated from EIS. The CWT analysis of the phase angle parameter is better for NP collision detection in terms of time resolution compared to the STFT method.

4.
Anal Chem ; 95(5): 2901-2908, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36691706

RESUMEN

The structure of an electrical double layer (EDL) at the interface of electrode/electrolyte or air/electrode/electrolyte is a fundamental aspect, however not fully understood. The potential of zero charge (PZC) is one of the clues to dictate the EDL, where the excess charge on the electrode surface is zero. Here, a nanoscale configuration of immersion method was proposed by integrating an electrochemical system into conductive atomic force spectroscopy under the amplitude modulation (AM) mode and agarose gel as the solid-liquid electrolyte. The PZC of boron-doped diamond was determined to be at 0.2 V (vs Ag/AgCl). By AM spectroscopy, the capacitive force shows remote electrification without direct electrode/electrolyte contact, which is dependent on the population of ions at the air/electrolyte interface. The surface potential by alignment of water is also evaluated. Prospectively, our study could benefit applications such as PZC measurement and non-electrode electrochemical processes at the air/electrolyte interface.

5.
J Colloid Interface Sci ; 615: 59-68, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35124506

RESUMEN

Harvesting energy from water motion is attractive and is considered as a promising component in a microgenerator system for decentralized energy. Recent developments have been shown to rely on spontaneous electrification at the solid-liquid interface, even though the precise mechanism is still under debate. In this paper, we report that the triple-phase boundary of solid/liquid/air can be quantitatively charged by tuning the work function by modifying a self-assembled monolayer (SAM), where a permanent or redox-active dipole controls the polarity and degree of electrification, and by modulating the electrochemical potential of the solution used. With the simple system proposed here, electricity is successfully delivered to turn on a light-emitting diode (LED), demonstrating the potential applicability of the system for energy harvesters.

6.
ACS Omega ; 6(1): 367-373, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33458488

RESUMEN

We investigated the charging current in cyclic voltammetry and the galvanostatic charging/discharging behavior of a controversial constant-phase element (CPE) to describe an electrical double layer used only in electrochemical impedance spectroscopy. The linear potential sweep in the time domain was transformed into the frequency domain using a Fourier transform. The current phasor was estimated by Ohm's law with the voltage phasor and a frequency-dependent CPE, followed by an inverse Fourier transform to determine the current in the time domain. For galvanostatic charging/discharging, the same procedure, apart from swapping the voltage signal with the current signal, was applied. The obtained cyclic voltammetry (CV) shows (1) a gradual increase in the charging current, (2) a higher charging current at a low scan rate, and (3) a deviation from the linear relationship between the charging current and the scan rate. For galvanostatic charging/discharging, the results demonstrate (1) curved charging/discharging behavior, (2) a higher voltage in the early stage, and (3) a lower voltage during longer charging periods. In contrast to a previous approach based on solving a differential equation with a simple RC circuit, our Fourier transform-based approach enables an analysis of electrochemical data with an arbitrary and complex circuit model such as a Randles equivalent circuit. The CPE model is more consistent with previous experimental results than a simple ideal capacitor, indicating a ubiquitous CPE in electrochemistry and a fair figure of merit for supercapacitors.

7.
ACS Omega ; 4(21): 19307-19313, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31763554

RESUMEN

Tafel analysis and electrochemical impedance spectroscopy (EIS) have been widely used to characterize many kinds of electrocatalysts. The former provides the kinetic information of an electrochemical reaction with the exchange current while the latter does with the charge transfer resistance closely related to the exchange current. Both techniques, however, suffer from practical troubles which often decrease their reliabilities. In order to circumvent those troubles, an alternative was suggested that Tafel analysis was combined with EIS, even though its theoretical background was not clearly established. Tafel analysis is based on dc measurement, and EIS is on an ac one, respectively. Here, inspired by the second generation of EIS from chronoamperometry, we try to find how those techniques are correlated by investigating an amperometric response from EIS. The first step is Fourier transform of an arbitrary dc potential signal in the time domain to obtain the amplitudes and phases of the Fourier series which are equivalent to ac signals of each frequency. Second, with the Fourier series being applied onto the impedance data, the responding currents of each frequency are calculated by Ohm's law. Third, the current in the frequency domain is transferred back to the time domain by inverse Fourier transform to yield chronoamperometric or Tafel plots depending on the type of the applied dc potential. Finally, we can study Tafel plots based on EIS at different conditions and their correlations which are expected to be a better indicator for characterizing electrocatalysts instead of the slope of the classical Tafel analysis.

8.
Anal Chem ; 91(22): 14208-14213, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31646855

RESUMEN

We report the implementation of second-generation Fourier transform electrochemical impedance spectroscopy (2G FT-EIS) with commercial potentiostat. Although 2G FT-EIS based on chronoamperometry has several advantages of short measurement time and ability of time-resolved EIS, a special home-built electrochemical system is essential, which has been an obstacle to the wide application of 2G FT-EIS. Current commercial potentiostat and software, however, has sufficient power thanks to recent state-of-the art electronics and software industry. 2G FT-EIS requires two signals of time versus voltage and time versus current from chronoamperometry with a high sampling rate. In this work, auxiliary input of a commercial potentiostat was used to record voltage signal concomitant with typical chronoamperometry that consisted of time versus current. This simple approach enables the 2G EIS without expensive frequency response analyzer (FRA) and the complex home-built instrument. EISs with various charge transfer kinetics were investigated by the formation of a self-assembled monolayer (SAM) on Au with different chain lengths. More to the point, in situ time-resolved EISs during the SAM were obtained, demonstrating the ability of a commercial potentiostat for time-resolved EIS.

9.
ACS Omega ; 4(11): 14599-14604, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31528814

RESUMEN

The handcrafted fabrication of a pyramidal mold on a silicon wafer for nanopatterning was investigated. This process started with the manual delivery of an aqueous glycerol solution onto the SiO2/Si wafer using a micropipette and subsequent drying to form a hemisphere whose diameter is in the range of hundreds of micrometers. A coating of polystyrene (PS) onto this wafer generates a circular hole caused by dewetting. Subsequently, anisotropic wet-etching with the PS film as a mask produces a pyramidal trench, whose apex approaches hundreds of nanometers. Various elastomeric materials were casted into this pyramidal mold. A pyramidal tip mounted on a simple micropositioner was used for electrochemistry and patterning of a protein. First, an agarose hydrogel was cast with a hydrogel pen for the electrochemical reaction (HYPER). The redox reaction at the HYPER-electrode interface demonstrated the characteristics of an ultramicroelectrode or bulk electrode based on the contact area. Second, the pyramidal polydimethylsiloxane served as a polymer pen for the contact printing of silane on a glass substrate. After the successive immobilization of biotin and avidin with fluorescence labeling, the resulting fluorescence image demonstrated the successful patterning of the protein. This new process for the creation of a pyramidal mold, referred to as a "do-it-yourself" process, offers advantages to nonspecialists in nanotechnology compared to conventional lithography, specifically simplicity, rapidity, and low cost.

10.
J Am Chem Soc ; 140(44): 14687-14695, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30371072

RESUMEN

We investigated the static charge generation by contact electrification between Au and polydimethylsiloxane (PDMS) and the redox reaction by the static charge in the aqueous phase, to reveal the mechanism of contact electrification and redox reaction which may be applied to mechanical-to-chemical energy harvesting. First, the static charge distribution on the equipotential Au was probed through Kelvin probe force microscopy (KPFM) in air after the contact with patterned PDMS. Positive charges are localized on the contact areas indicating the ion migration while the polarity becomes negative after water contact. Second, the redox reaction by the charged Au was electrochemically monitored using open circuit potential (OCP), stripping voltammetry, and copper underpotential deposition (UPD). All electrochemical experiments consistently resulted in the reduction of the reactant by the charged Au within the highly dielectric water media. We concluded that the reduction is not driven by the discharge of static charge on Au but by reducing radicals.

11.
Nanoscale ; 10(28): 13581-13588, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29974907

RESUMEN

Human skin can perceive pressure, chemical compounds and temperature with a high spatial resolution via specific receptors. Inspired by human skin, we present a wet-chemistry based hydrogel sensing platform for 2D imaging sensitive to specific external stimuli, e.g., pressure, chemicals and temperature. This platform is composed of a hydrogel pyramidal array on a single electrode. Each pyramid serves as a spatially separated reservoir for chemical reactions, enabling independent pixels for sensing without individual electrodes. Depending on the electrochemiluminescence (ECL) electrolyte for specific stimuli, our platform possesses 2D imaging capabilities with high sensitivity for pH and temperature in addition to pressure via the deformation of the viscoelastic hydrogel. This work represents an important step toward the application of sensitive chemical reactions for various external stimuli to biocompatible electronic skins based on hydrogels without addressing circuit for each pixel.

12.
ACS Appl Mater Interfaces ; 9(40): 35114-35124, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28920434

RESUMEN

Oxide dielectric materials play a key role in a wide range of high-performance solid-state electronics from semiconductor devices to emerging wearable and soft bioelectronic devices. Although several previous advances are noteworthy, their typical processing temperature still far exceeds the thermal limitations of soft materials, impeding their wide utilization in these emerging fields. Here, we report an innovative route to form highly reliable aluminum oxide dielectric films using an ultralow-temperature (<60 °C) solution process with a class of oxide nanocluster precursors. The extremely low-temperature synthesis of oxide dielectric films was achieved by using low-impurity, bulky metal-oxo-hydroxy nanoclusters combined with a spatially controllable and highly energetic light activation process. It was noteworthy that the room-temperature light activation process was highly effective in dissociating the metal-oxo-hydroxy clusters, enabling the formation of a dense atomic network at low temperature. The ultralow-temperature solution-processed oxide dielectrics demonstrated high breakdown field (>6 MV cm-1), low leakage (∼1 × 10-8 A cm-2 at 2 MV cm-1), and excellent electrical stability comparable to those of vacuum-deposited and high-temperature-processed dielectric films. For potential applications of the oxide dielectrics, transparent metal oxides and carbon nanotube active devices as well as integrated circuits were implemented directly on both ultrathin polymeric and highly stretchable substrates.

13.
ACS Appl Mater Interfaces ; 9(24): 20955-20962, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28541653

RESUMEN

A programmable electrochemical rectifier based on thin-layer electrochemistry is described here. Both the rectification ratio and the response time of the device are programmable by controlling the gap distance of the thin-layer electrochemical cell, which is easily controlled using commercially available beads. One of the electrodes was modified using a ferrocene-terminated self-assembled monolayer to offer unidirectional charge transfers via soluble redox species. The thin-layer configuration provided enhanced mass transport, which was determined by the gap thickness. The device with the smallest gap thickness (∼4 µm) showed an unprecedented, high rectification ratio (up to 160) with a fast response time in a two-terminal configuration using conventional electronics.

14.
ACS Nano ; 11(2): 1572-1580, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28045497

RESUMEN

The temperature coefficient of resistivity (TCR) and cryogenic sensitivity (Sv) of p-type silicon (p-Si) in the low-temperature region (10-30 K) are remarkably improved by increasing the coverage of galvanically displaced Au nanoparticles (NPs). By increase of the galvanic displacement time from 10 to 30 s, the average surface roughness (Ra) of the samples increases from 0.31 to 2.31 nm and the coverage rate of Au NPs increases from 3.1% to 21.9%. In the freeze-out region of the sample, an up to 103% increase of TCR and dramatically improved Sv of p-Si (∼5813%) are observed with Au coverage of 21.9% compared to p-Si without galvanically displaced Au NPs. By means of a finite element method (FEM) simulation study, it was found that the increase of surface roughness and a number of Au NPs on p-Si results in a higher temperature gradient and thermoelectric power to cause the unusual TCR and Sv values in the samples.

15.
Nanotechnology ; 26(50): 505202, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26581020

RESUMEN

Previous research has shown that disorder, dislocation, and carrier concentration are the main factors impacting transitions in the traditional metal-insulator transition (MIT) and metal-semiconductor transition (MST). In this study, it is demonstrated that a non-traditional metal-semiconductor transition governed by two-layer conduction is possible by tuning the conducting channel of one layer of the two-layer conduction system. By means of the electroless deposition method we produced Au nanofeatures (AuNFs) on p-type silicon (p-Si) as the two-layer conduction system, controlling AuNF coverage (Au%) below and above the percolation threshold (p c). Even when the AuNF coverage percentage is larger than p c, the resistivities of the AuNFs on p-Si show MST as the temperature increases. To demonstrate this finding, we present a conduction model based upon two predominant parallel conductions by AuNFs and p-Si in the present paper. In the results, we show how the temperature of the MST (T MST) is tuned from 145 to 232 K as Au% is changed from 82.7 to 54.3%.

16.
Nanoscale ; 7(3): 994-1001, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25469501

RESUMEN

A hydrogel pen consisting of a microscopic pyramid containing an electrolyte offers a localized electroactive area on the nanometer scale via controlled contact of the apex with a working electrode. The hydrogel pen merges the fine control of atomic force microscopy with non-linear diffusion of an ultramicroelectrode, producing a faradaic current that depends on the small electroactive area. The theoretical and experimental investigations of the mass transport behavior within the hydrogel reveal that the steady-state current from the faradaic reaction is linearly proportional to the deformed length of the hydrogel pen by contact, i.e. signal transduction of deformation to an electrochemical signal, which enables the fine control of the electroactive area in the nanometer-scale regime. Combined with electrodeposition, localized electrochemistry of the hydrogel pen results in the ability to fabricate small sizes (110 nm in diameter), tall heights (up to 30 µm), and arbitrary structures, thereby indicating an additive process in 3 dimensions by localized electrodeposition.

17.
J Biomed Nanotechnol ; 9(5): 901-6, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23802422

RESUMEN

An enzyme stimulated deposition of prussian blue onto the gold-coated magnetic microparticles is described. We propose to synthesize the continuous outer gold layer on the magnetic particle for a gold working electrode and its superparamagnetic property. In-depth characterization of the gold shell formation was studied with scanning electron microscopy, energy-dispersive X-ray spectroscopy, cyclic voltammetry. The gold-coated magnetic microparticles offered adhesive layer for the immobilization of glucose oxidase catalyzing the generation of prussian blue in the presence of glucose. The assembled prussian blue on the gold shell surfaces was detected with electrochemical measurements depending on the glucose concentration. With accomplishing the linear response range from 0.2 mM to 10 mM of glucose, this approach successfully proposed the applicability of the magnetic core-gold shell structures to the electrochemical bioassay area.


Asunto(s)
Técnicas Biosensibles/instrumentación , Materiales Biocompatibles Revestidos/síntesis química , Ferrocianuros/química , Glucosa/análisis , Oro/química , Imanes/química , Técnicas Biosensibles/métodos , Catálisis , Precipitación Química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Ferrocianuros/farmacocinética , Glucosa/farmacocinética , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Nanopartículas de Magnetita/química , Microesferas , Tamaño de la Partícula , Reacción del Azul Prusia
18.
ACS Nano ; 7(7): 6017-23, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23750804

RESUMEN

Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst.


Asunto(s)
Electrodos , Oro/química , Hidrógeno/química , Nanopartículas del Metal/química , Platino (Metal)/química , Agua/química , Catálisis , Electroquímica/instrumentación , Campos Electromagnéticos , Diseño de Equipo , Análisis de Falla de Equipo , Oro/efectos de la radiación , Hidrógeno/aislamiento & purificación , Luz , Nanopartículas del Metal/efectos de la radiación , Fotoquímica/instrumentación , Platino (Metal)/efectos de la radiación
19.
Nano Lett ; 12(1): 298-302, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22142272

RESUMEN

Herein we report that silicon nanowires (SiNWs) fabricated via metal-catalyzed electroless etching yielded a photoelectrochemical hydrogen generation performance superior to that of a planar Si, which is attributed to a lower kinetic overpotential due to a higher surface roughness, favorable shift in the flat-band potential, and light-trapping effects of the SiNW surface. The SiNW photocathode yielded a photovoltage of 0.42 V, one of the highest values ever reported for hydrogen generation on p-type Si/electrolyte interfaces.


Asunto(s)
Electrodos , Hidrógeno/química , Silicio/química , Silicio/efectos de la radiación , Titanio/química , Diseño de Equipo , Análisis de Falla de Equipo , Hidrógeno/aislamiento & purificación , Luz , Ensayo de Materiales
20.
Langmuir ; 27(13): 8548-53, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21634409

RESUMEN

In this paper, we report the microelectrode array fabrication using selective wetting/dewetting of polymers on a chemical pattern which is a simple and convenient method capable of creating negative polymeric replicas using polyethylene glycol (PEG) as a clean and nontoxic sacrificial layer. The fabricated hole-patterned polypropylene film on gold demonstrated enhanced electrochemical properties. The chemical pattern is fabricated by microcontact printing using octadecanethiol (ODT) as an ink on gold substrate. When PEG is spin-cast on the chemical pattern, PEG solution selectively dewets the ODT patterned areas and wets the remaining bare gold areas, leading to the formation of arrayed PEG dots. A negative replicas of the PEG dot array is obtained by spin-coating of polypropylene (PP) solution in hexane which preferentially interacts with the hydrophobic ODT region on the patterned gold surface. The arrayed PEG dots are not affected the during PP spin-coating step because of their intrinsic immiscibility. Consequently, the hole-patterned PP film is obtained after PEG removal. The electrochemical signal of the PP film demonstrates the negligible leakage current by high dielectric and self-healing of defects on the chemical pattern by the polymer. This method is applicable to fabrication of microelectrode arrays and possibly can be employed to fabricate a variety of functional polymeric structures, such as photomasks, arrays of biomolecules, cell arrays, and arrays of nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...