Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ginseng Res ; 46(1): 126-137, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35058729

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is one of the main chronic liver diseases. NASH is identified by lipid accumulation, inflammation, and fibrosis. Jinan Red Ginseng (JRG) and licorice have been widely used because of their anti-inflammatory and hepatoprotective effects. Hence, this study assessed JRG and licorice extract mixtures' effects on NASH progression. METHODS: Palmitic acid (PA) and the western diet (WD) plus, high glucose-fructose water were used to induce in vitro and in vivo NASH. Mice were orally administered with JRG-single (JRG-S) and JRG-mixtures (JRG-M; JRG-S + licorice) at 0, 50, 100, 200 or 400 mg/kg/day once a day during the last half-period of diet feeding. RESULTS: JRG-S and JRG-M reduced NASH-related pathologies in WD-fed mice. JRG-S and JRG-M consistently decreased the mRNA level of genes related with inflammation, fibrosis, and lipid metabolism. The treatment of JRG-S and JRG-M also diminished the SREBP-1c protein levels and the p-AMPK/AMPK ratio. The FAS protein levels were decreased by JRG-M treatment both in vivo and in vitro but not JRG-S. CONCLUSION: JRG-M effectively reduced lipogenesis by modulating AMPK downstream signaling. Our findings suggest that this mixture can be used as a prophylactic or therapeutic alternative for the remedy of NASH.

3.
Biomed Pharmacother ; 117: 109066, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31226639

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease. Korean red ginseng is a Korean traditional medicine. In this study, we estimated the effects of Korean red ginseng water extract (RGE) in the 1-chloro-2,4-dinitrobenzene (DNCB)-induced BALB/c mouse model which develops AD-like lesions. After RGE administration (100, 200, and 400 mg/kg) to DNCB-induced mice there were improvements in the dermatitis score and skin pH, a decrease in trans-epidermal water loss, and improved skin hydration. RGE also significantly inhibited eosinophil infiltration, increased filaggrin protein levels, and decreased serum IgE levels, epidermal thickness, mast cell infiltration, and ceramidase release. Compared with that in DNCB-induced mice, RGE effectively decreased the mRNA expression levels of interleukin-6 (IL-6), thymic stromal lymphopoietin (TSLP), and tumor necrosis factor-α (TNF-α), as well as the protein level of thymus and activation-regulated chemokine (TARC). These inhibitory RGE effects are mediated by inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Furthermore, we confirmed that RGE suppresses interferon-γ (IFN-γ) and TNF-α-induced expression of macrophage-derived chemokine (MDC) and TARC genes in human keratinocyte (HaCaT) cells. Taken together, these results demonstrate that RGE may exert anti-atopic related to responses by suppression the expression of inflammatory mediators, cytokines, and chemokines via downregulation of MAPK signaling pathways, suggesting that RGE may be an effective therapeutic approach for prevention of AD-like disease.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/enzimología , Inflamación/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas , Panax/química , Extractos Vegetales/uso terapéutico , Agua/química , Animales , Supervivencia Celular/efectos de los fármacos , Quimiocinas/metabolismo , Dermatitis Atópica/patología , Dinitroclorobenceno , Modelos Animales de Enfermedad , Proteínas Filagrina , Humanos , Inflamación/patología , Mediadores de Inflamación/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Piel/patología , Pérdida Insensible de Agua/efectos de los fármacos
4.
J Med Food ; 18(4): 421-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25658580

RESUMEN

Red ginseng (Panax ginseng C.A. Meyer) is the most widely recognized medicinal herb due to its remedial effects in various disorders, such as cancers, diabetes, and heart problems. In this study, we investigated the anticancer effect of fermented red ginseng extract (f-RGE; provided by Jeonju Biomaterials Institute, Jeonju, South Korea) in a parallel comparison with the effect of nonfermented red ginseng extract (nf-RGE; control) on several cancer cell lines--MCF-7 breast cancer cells, HepG2 hepatocellular carcinoma cells, and reprogrammed MCF-7 cells (mimicking cancer stem cells). Cells were cultured at various concentrations of RGE (from 0.5 up to 5 mg/mL) and their viabilities and proliferative properties were examined. Our data demonstrate the following: (1) nf-RGE inhibited cell viability at ≥1 mg/mL for MCF-7 cells and ≥2 mg/mL for HepG2 cells, (2) in the presence of a carcinogenic agent, 12-O-tetradecanoylphorbol-13-acetate (TPA), nf-RGE treatment in combination with paclitaxel synergistically decreased MCF-7 as well as HepG2 cell viability, (3) f-RGE (which contained a greater level of Rg3 content) more effectively decreased the viability of MCF-7 and HepG2 cells compared to nf-RGE, and (4) f-RGE appeared more potent for inhibiting cancerous differentiation of reprogrammed MCF-7 cells in a synergistic fashion with paclitaxel, especially in the presence of TPA, compared to nf-RGE. These findings suggest that f-RGE treatment may be more effective for decreasing cancer cell survival by inducing apoptotic cell death and also presumably for preventing cancer stem cell differentiation compared to nf-RGE.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Lacticaseibacillus rhamnosus/metabolismo , Panax/química , Panax/microbiología , Extractos Vegetales/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Fermentación , Células Hep G2 , Humanos , Panax/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA