Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biomech Eng ; 144(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36128759

RESUMEN

Hypertensive pregnancy disorders (HPDs), such as pre-eclampsia, are leading sources of both maternal and fetal morbidity in pregnancy. Noninvasive imaging, such as ultrasound (US) and magnetic resonance imaging (MRI), is an important tool for predicting and monitoring these high risk pregnancies. While imaging can measure hemodynamic parameters, such as uterine artery pulsatility and resistivity indices (PI and RI), the interpretation of such metrics for disease assessment relies on ad hoc standards, which provide limited insight to the physical mechanisms underlying the emergence of hypertensive pregnancy disorders. To provide meaningful interpretation of measured hemodynamic data in patients, advances in computational fluid dynamics can be brought to bear. In this work, we develop a patient-specific computational framework that combines Bayesian inference with a reduced-order fluid dynamics model to infer parameters, such as vascular resistance, compliance, and vessel cross-sectional area, known to be related to the development of hypertension. The proposed framework enables the prediction of hemodynamic quantities of interest, such as pressure and velocity, directly from sparse and noisy MRI measurements. We illustrate the effectiveness of this approach in two systemic arterial network geometries: an aorta with branching carotid artery and a maternal pelvic arterial network. For both cases, the model can reconstruct the provided measurements and infer parameters of interest. In the case of the maternal pelvic arteries, the model can make a distinction between the pregnancies destined to develop hypertension and those that remain normotensive, expressed through the value range of the predicted absolute pressure.


Asunto(s)
Hipertensión , Preeclampsia , Embarazo , Femenino , Humanos , Estudios de Factibilidad , Teorema de Bayes , Arteria Uterina/diagnóstico por imagen , Preeclampsia/diagnóstico por imagen , Hipertensión/diagnóstico por imagen , Flujo Pulsátil
2.
Magn Reson Med ; 87(1): 323-336, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34355815

RESUMEN

PURPOSE: Magnetic susceptibility (Δχ) alterations have shown association with myocardial infarction (MI) iron deposition, yet there remains limited understanding of the relationship between relaxation rates and susceptibility or the effect of magnetic field strength. Hence, Δχ and R2∗ in MI were compared at 3T and 7T. METHODS: Subacute MI was induced by coronary artery ligation in male Yorkshire swine. 3D multiecho gradient echo imaging was performed at 1-week postinfarction at 3T and 7T. Quantitative susceptibility mapping images were reconstructed using a morphology-enabled dipole inversion. R2∗ maps and quantitative susceptibility mapping were generated to assess the relationship between R2∗ , Δχ, and field strength. Infarct histopathology was investigated. RESULTS: Magnetic susceptibility was not significantly different across field strengths (7T: 126.8 ± 41.7 ppb; 3T: 110.2 ± 21.0 ppb, P = NS), unlike R2∗ (7T: 247.0 ± 14.8 Hz; 3T: 106.1 ± 6.5 Hz, P < .001). Additionally, infarct Δχ and R2∗ were significantly higher than remote myocardium. Magnetic susceptibility at 7T versus 3T had a significant association (ß = 1.02, R2 = 0.82, P < .001), as did R2∗ (ß = 2.35, R2 = 0.98, P < .001). Infarct pathophysiology and iron deposition were detected through histology and compared with imaging findings. CONCLUSION: R2∗ showed dependence and Δχ showed independence of field strength. Histology validated the presence of iron and supported imaging findings.


Asunto(s)
Imagen por Resonancia Magnética , Daño por Reperfusión Miocárdica , Animales , Hierro , Fenómenos Magnéticos , Magnetismo , Masculino , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Porcinos
3.
Radiol Artif Intell ; 3(4): e200148, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34350405

RESUMEN

PURPOSE: To perform automated myocardial segmentation and uptake classification from whole-body fluorine 18 fluorodeoxyglucose (FDG) PET. MATERIALS AND METHODS: In this retrospective study, consecutive patients who underwent FDG PET imaging for oncologic indications were included (July-August 2018). The left ventricle (LV) on whole-body FDG PET images was manually segmented and classified as showing no myocardial uptake, diffuse uptake, or partial uptake. A total of 609 patients (mean age, 64 years ± 14 [standard deviation]; 309 women) were included and split between training (60%, 365 patients), validation (20%, 122 patients), and testing (20%, 122 patients) datasets. Two sequential neural networks were developed to automatically segment the LV and classify the myocardial uptake pattern using segmentation and classification training data provided by human experts. Linear regression was performed to correlate findings from human experts and deep learning. Classification performance was evaluated using receiver operating characteristic (ROC) analysis. RESULTS: There was moderate agreement of uptake pattern between experts and deep learning (as a fraction of correctly categorized images) with 78% (36 of 46) for no uptake, 71% (34 of 48) for diffuse uptake, and 71% (20 of 28) for partial uptake. There was no bias in LV volume for partial or diffuse uptake categories (P = .56); however, deep learning underestimated LV volumes in the no uptake category. There was good correlation for LV volume (R 2 = 0.35, b = .71). ROC analysis showed the area under the curve for classifying no uptake and diffuse uptake was high (> 0.90) but lower for partial uptake (0.77). The feasibility of a myocardial uptake index (MUI) for quantifying the degree of myocardial activity patterns was shown, and there was excellent visual agreement between MUI and uptake patterns. CONCLUSION: Deep learning was able to segment and classify myocardial uptake patterns on FDG PET images.Keywords: PET, Heart, Computer Aided Diagnosis, Computer Application-Detection/DiagnosisSupplemental material is available for this article.©RSNA, 2021.

4.
Nat Commun ; 11(1): 3273, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601301

RESUMEN

Restoration of coronary blood flow after a heart attack can cause reperfusion injury potentially leading to impaired cardiac function, adverse tissue remodeling and heart failure. Iron is an essential biometal that may have a pathologic role in this process. There is a clinical need for a precise noninvasive method to detect iron for risk stratification of patients and therapy evaluation. Here, we report that magnetic susceptibility imaging in a large animal model shows an infarct paramagnetic shift associated with duration of coronary artery occlusion and the presence of iron. Iron validation techniques used include histology, immunohistochemistry, spectrometry and spectroscopy. Further mRNA analysis shows upregulation of ferritin and heme oxygenase. While conventional imaging corroborates the findings of iron deposition, magnetic susceptibility imaging has improved sensitivity to iron and mitigates confounding factors such as edema and fibrosis. Myocardial infarction patients receiving reperfusion therapy show magnetic susceptibility changes associated with hypokinetic myocardial wall motion and microvascular obstruction, demonstrating potential for clinical translation.


Asunto(s)
Hierro/análisis , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Anciano , Animales , Estudios Transversales , Femenino , Ferritinas/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/patología , Cicatrización de Heridas
5.
J Cardiovasc Magn Reson ; 21(1): 5, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30626437

RESUMEN

BACKGROUND: Endogenous contrast T1ρ cardiovascular magnetic resonance (CMR) can detect scar or infiltrative fibrosis in patients with ischemic or non-ischemic cardiomyopathy. Existing 2D T1ρ techniques have limited spatial coverage or require multiple breath-holds. The purpose of this project was to develop an accelerated, free-breathing 3D T1ρ mapping sequence with whole left ventricle coverage using a multicoil, compressed sensing (CS) reconstruction technique for rapid reconstruction of undersampled k-space data. METHODS: We developed a cardiac- and respiratory-gated, free-breathing 3D T1ρ sequence and acquired data using a variable-density k-space sampling pattern (A = 3). The effect of the transient magnetization trajectory, incomplete recovery of magnetization between T1ρ-preparations (heart rate dependence), and k-space sampling pattern on T1ρ relaxation time error and edge blurring was analyzed using Bloch simulations for normal and chronically infarcted myocardium. Sequence accuracy and repeatability was evaluated using MnCl2 phantoms with different T1ρ relaxation times and compared to 2D measurements. We further assessed accuracy and repeatability in healthy subjects and compared these results to 2D breath-held measurements. RESULTS: The error in T1ρ due to incomplete recovery of magnetization between T1ρ-preparations was T1ρhealthy = 6.1% and T1ρinfarct = 10.8% at 60 bpm and T1ρhealthy = 13.2% and T1ρinfarct = 19.6% at 90 bpm. At a heart rate of 60 bpm, error from the combined effects of readout-dependent magnetization transients, k-space undersampling and reordering was T1ρhealthy = 12.6% and T1ρinfarct = 5.8%. CS reconstructions had improved edge sharpness (blur metric = 0.15) compared to inverse Fourier transform reconstructions (blur metric = 0.48). There was strong agreement between the mean T1ρ estimated from the 2D and accelerated 3D data (R2 = 0.99; P < 0.05) acquired on the MnCl2 phantoms. The mean R1ρ estimated from the accelerated 3D sequence was highly correlated with MnCl2 concentration (R2 = 0.99; P < 0.05). 3D T1ρ acquisitions were successful in all human subjects. There was no significant bias between undersampled 3D T1ρ and breath-held 2D T1ρ (mean bias = 0.87) and the measurements had good repeatability (COV2D = 6.4% and COV3D = 7.1%). CONCLUSIONS: This is the first report of an accelerated, free-breathing 3D T1ρ mapping of the left ventricle. This technique may improve non-contrast myocardial tissue characterization in patients with heart disease in a scan time appropriate for patients.


Asunto(s)
Técnicas de Imagen Sincronizada Cardíacas , Análisis de Fourier , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/diagnóstico por imagen , Técnicas de Imagen Sincronizada Respiratorias , Técnicas de Imagen Sincronizada Cardíacas/instrumentación , Estudios de Casos y Controles , Electrocardiografía , Estudios de Factibilidad , Frecuencia Cardíaca , Humanos , Imagen por Resonancia Magnética/instrumentación , Modelos Cardiovasculares , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Fantasmas de Imagen , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Respiración , Técnicas de Imagen Sincronizada Respiratorias/instrumentación
6.
J Magn Reson Imaging ; 49(1): 59-68, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30390347

RESUMEN

BACKGROUND: Uterine artery (UtA) hemodynamics might be used to predict risk of hypertensive pregnancy disorders, including preeclampsia and intrauterine growth restriction. PURPOSE OR HYPOTHESIS: To determine the feasibility of 4D flow MRI in pregnant subjects by characterizing UtA anatomy, computing UtA flow, and comparing UtA velocity, and pulsatility and resistivity indices (PI, RI) with transabdominal Doppler ultrasound (US). STUDY TYPE: Prospective cross-sectional study from June 6, 2016, to May 2, 2018. POPULATION OR SUBJECTS OR PHANTOM OR SPECIMEN OR ANIMAL MODEL: Forty-one singleton pregnant subjects (age [range] = 27.0 ± 5.9 [18-41] years) in their second or third trimester. We additionally scanned three subjects who had prepregnancy diabetes or chronic hypertension. FIELD STRENGTH/SEQUENCE: The subjects underwent UtA and placenta MRI using noncontrast angiography and 4D flow at 1.5T. ASSESSMENT: UtA anatomy was described based on 4D flow-derived noncontrast angiography, while UtA flow properties were characterized by net flow, systolic/mean/diastolic velocity, PI and RI through examination of 4D flow data. PI and RI are standard hemodynamic parameters routinely reported on Doppler US. STATISTICAL TESTS: Spearman's rank correlation, Wilcoxon signed rank tests, and Bland-Altman plots were used to preliminarily investigate the relationships between flow parameters, gestational age, and Doppler US. or RESULTS: 4D flow MRI and UtA flow quantification was feasible in all subjects. There was considerable heterogeneity in UtA geometry in each subject between left and right UtAs and between subjects. Mean 4D flow-based parameters were: mean bilateral flow rate = 605.6 ± 220.5 mL/min, PI = 0.72 ± 0.2, and RI = 0.47 ± 0.1. Bilateral flow did not change with gestational age. We found that MRI differed from US in terms of lower PI (mean difference -0.1) and RI (mean difference < -0.1) with Wilcoxon signed rank test P = 0.05 and P = 0.13, respectively. DATA CONCLUSION: 4D flow MRI is a feasible approach for describing UtA anatomy and flow in pregnant subjects. LEVEL OF EVIDENCE: Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:59-68.


Asunto(s)
Retardo del Crecimiento Fetal/diagnóstico por imagen , Hemodinámica , Hipertensión/diagnóstico por imagen , Imagen por Resonancia Magnética , Preeclampsia/diagnóstico por imagen , Ultrasonografía Doppler , Arteria Uterina/diagnóstico por imagen , Adolescente , Adulto , Estudios Transversales , Estudios de Factibilidad , Femenino , Humanos , Hipertensión/complicaciones , Embarazo , Complicaciones Cardiovasculares del Embarazo/diagnóstico por imagen , Segundo Trimestre del Embarazo , Tercer Trimestre del Embarazo , Estudios Prospectivos , Reproducibilidad de los Resultados , Adulto Joven
7.
Artículo en Inglés | MEDLINE | ID: mdl-24110610

RESUMEN

MRI-guided laser-induced interstitial thermal therapy (LITT) is a form of laser ablation and a potential alternative to craniotomy in treating glioblastoma multiforme (GBM) and epilepsy patients, but its effectiveness has yet to be fully evaluated. One way of assessing short-term treatment of LITT is by evaluating changes in post-treatment MRI as a measure of response. Alignment of pre- and post-LITT MRI in GBM and epilepsy patients via nonrigid registration is necessary to detect subtle localized treatment changes on imaging, which can then be correlated with patient outcome. A popular deformable registration scheme in the context of brain imaging is Thirion's Demons algorithm, but its flexibility often introduces artifacts without physical significance, which has conventionally been corrected by Gaussian smoothing of the deformation field. In order to prevent such artifacts, we instead present the Anisotropic smoothing regularizer (AnSR) which utilizes edge-detection and denoising within the Demons framework to regularize the deformation field at each iteration of the registration more aggressively in regions of homogeneously oriented displacements while simultaneously regularizing less aggressively in areas containing heterogeneous local deformation and tissue interfaces. In contrast, the conventional Gaussian smoothing regularizer (GaSR) uniformly averages over the entire deformation field, without carefully accounting for transitions across tissue boundaries and local displacements in the deformation field. In this work we employ AnSR within the Demons algorithm and perform pairwise registration on 2D synthetic brain MRI with and without noise after inducing a deformation that models shrinkage of the target region expected from LITT. We also applied Demons with AnSR for registering clinical T1-weighted MRI for one epilepsy and one GBM patient pre- and post-LITT. Our results demonstrate that by maintaining select displacements in the deformation field, AnSR outperforms both GaSR and no regularizer (NoR) in terms of normalized sum of squared differences (NSSD) with values such as 0.743, 0.807, and 1.000, respectively, for GBM.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Terapia por Láser , Imagen por Resonancia Magnética , Algoritmos , Anisotropía , Artefactos , Bases de Datos Factuales , Epilepsia/diagnóstico , Epilepsia/terapia , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Modelos Biológicos , Radiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...