Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Integr Med Res ; 13(2): 101038, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38716164

RESUMEN

Background: Tagetes erecta Linn, popularly known as Marigold, has various pharmacological effects. It is used as a dietary supplement, especially for the posterior segment of the eye. However, the effect of T. erecta Linn on ocular disorders is still unknown. The purpose of this study was to investigate the effect of oral administration of ethanol extract of T. erecta Linn flower (TE) for dry eye syndrome (DED) in a murine model. Methods: Twenty-four mice were subjected to desiccation stress (DS) to induce DED and subcutaneous injection of scopolamine hydrobromide was administered 4 times a day for 21 days. TE and cyclosporine A (CsA) were administered for an additional 14 days under DS conditions. Mice were randomly divided into four groups: control, TE200, TE400, and CsA. Changes in tear production and corneal fluorescein staining were measured at baseline, after 7 days of DS, and after treatment for 7 and 14 days. Results: DS significantly decreased tear production and increased corneal fluorescein score; the parameters were significantly reversed in the TE400 (oral administration of 400 mg TE/kg body weight) group. TE markedly improved DS-induced changes including corneal epithelial detachment and lacrimal gland inflammation. The anti-inflammatory effect of TE 400 supplementation was similar to that of CsA. Conclusions: Our findings suggest that oral administration of TE may protect against DS-induced DED via stabilization of the tear film and suppression of inflammation. This study provides an experimental basis for further studies on the potential clinical use of TE in preventing DED.

2.
Toxicol Mech Methods ; : 1-10, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736318

RESUMEN

This study investigated the mechanism of silver nanoparticle (AgNP) cytotoxicity from a mitochondrial perspective. The effect of AgNP on manganese superoxide dismutase (MnSOD), a mitochondrial antioxidant enzyme, against oxidative stress has not been studied in detail. We demonstrated that AgNP decreased MnSOD mRNA level, protein expression, and activity in human Chang liver cells in a time-dependent manner. AgNP induced the production of mitochondrial reactive oxygen species (mtROS), particularly superoxide anion. AgNP was found to increase mitochondrial calcium level and disrupt mitochondrial function, leading to reduced ATP level, succinate dehydrogenase activity, and mitochondrial permeability. AgNP induced cytochrome c release from the mitochondria into the cytoplasm, attenuated the expression of the anti-apoptotic proteins phospho Bcl-2 and Mcl-1, and induced the expression of the pro-apoptotic proteins Bim and Bax. In addition, c-Jun N-terminal kinase (JNK) phosphorylation was significantly increased by AgNP. Treatment with elamipretide (a mitochondria-targeted antioxidant) and SP600125 (a JNK inhibitor) showed the involvement of MnSOD and JNK in these processes. These results indicated that AgNP damaged human Chang liver cells by destroying mitochondrial function through the accumulation of mtROS.

3.
Int J Med Sci ; 21(5): 937-948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617009

RESUMEN

The skin is directly exposed to atmospheric pollutants, especially particulate matter 2.5 (PM2.5) in the air, which poses significant harm to skin health. However, limited research has been performed to identify molecules that can confer resistance to such substances. Herein, we analyzed the effect of fermented sea tangle (FST) extract on PM2.5-induced human HaCaT keratinocyte damage. Results showed that FST extract, at concentrations less than 800 µg/mL, exhibited non-significant toxicity to cells and concentration-dependent inhibition of PM2.5-induced reactive oxygen species (ROS) production. PM2.5 induced oxidative stress by stimulating ROS, resulting in DNA damage, lipid peroxidation, and protein carbonylation, which were inhibited by the FST extract. FST extract significantly suppressed the increase in calcium level and apoptosis caused by PM2.5 treatment and significantly restored the reduced cell viability. Mitochondrial membrane depolarization occurred due to PM2.5 treatment, however, FST extract recovered mitochondrial membrane polarization. PM2.5 inhibited the expression of the anti-apoptotic protein Bcl-2, and induced the expression of pro-apoptotic proteins Bax and Bim, the apoptosis initiator caspase-9, as well as the executor caspase-3, however, FST extract effectively protected the changes in the levels of these proteins caused by PM2.5. Interestingly, pan-caspase inhibitor Z-VAD-FMK treatment enhanced the anti-apoptotic effect of FST extract in PM2.5-treated cells. Our results indicate that FST extract prevents PM2.5-induced cell damage via inhibition of mitochondria-mediated apoptosis in human keratinocytes. Accordingly, FST extract could be included in skin care products to protect cells against the harmful effects of PM2.5.


Asunto(s)
Queratinocitos , Piel , Humanos , Especies Reactivas de Oxígeno , Apoptosis , Material Particulado/toxicidad
4.
Artículo en Inglés | MEDLINE | ID: mdl-38683453

RESUMEN

Runt domain transcription factor 3 (RUNX3) suppresses many different cancer types and is disabled by mutations, epigenetic repression, or cytoplasmic mislocalization. In this study, we investigated whether oxidative stress is associated with RUNX3 accumulation from the nucleus to the cytoplasm in terms of histone modification. Oxidative stress elevated histone deacetylase (HDAC) level and lowered that of histone acetyltransferase. In addition, oxidative stress decreased the expression of mixed lineage leukemia (MLL), a histone methyltransferase, but increased the expression of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), which is also a histone methyltransferase. Moreover, oxidative stress-induced RUNX3 phosphorylation, Src activation, and Jun activation domain-binding protein 1 (JAB1) expression were inhibited by knockdown of HDAC and G9a, restoring the nuclear localization of RUNX3 under oxidative stress. Cytoplasmic RUNX3 localization was followed by oxidative stress-induced histone modification, activated Src along with RUNX3 phosphorylation, and induction of JAB1, resulting in RUNX3 inactivation.

5.
Mol Cells ; : 100066, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679413

RESUMEN

Particulate matter 2.5 (PM2.5) poses a serious threat to human health and is responsible for respiratory disorders, cardiovascular diseases, and skin disorders. 3-Bromo-4,5- dihydroxybenzaldehyde (3-BDB), abundant in marine red algae, exhibits anti-inflammatory, antioxidant, and anti-diabetic activities. In this study, we investigated the protective mechanisms of 3-BDB against PM2.5-induced cell cycle arrest and autophagy in human keratinocytes. Intracellular reactive oxygen species (ROS) generation, DNA damage, cell cycle arrest, intracellular Ca2+ level, and autophagy activation were tested. 3-BDB was found to restore cell proliferation and viability which were reduced by PM2.5. Furthermore, 3-BDB reduced PM2.5-induced ROS levels, DNA damage, and attenuated cell cycle arrest. Moreover, 3-BDB ameliorated the PM2.5-induced increases in cellular Ca2+ level and autophagy activation. While PM2.5 treatment reduced cell growth and viability, these were restored by the treatment with the autophagy inhibitor bafilomycin A1 or 3-BDB. The findings indicate that 3-BDB ameliorates skin cell death caused by PM2.5 via inhibiting cell cycle arrest and autophagy. Hence, 3-BDB can be exploited as a preventive/therapeutic agent for PM2.5-induced skin impairment.

6.
Biomol Ther (Seoul) ; 32(3): 349-360, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602043

RESUMEN

Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

7.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543055

RESUMEN

Scutellaria baicalensis Georgi and Raphanus Sativus Linne herbal mixture (SRE) is a Chinese herbal medicine. In this study, we aimed to evaluate the therapeutic efficacy of SRE as an active ingredient for 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) and to predict the underlying therapeutic mechanisms and involved pathways using network pharmacological analysis. Treatment with SRE accelerated the development of AD-like lesions, improving thickness and edema of the epidermis. Moreover, administering the SRE to AD-like mice suppressed immunoglobulin E and interleukin-4 cytokine and reduced T lymphocyte differentiation. In silico, network analysis was used to predict the exact genes, proteins, and pathways responsible for the therapeutic effect of the SRE against DNCB-induced AD. These results indicated that the SRE exerted protective effects on the DNCB-induced AD-like model by attenuating histopathological changes and suppressing the levels of inflammatory mediators. Therefore, the SRE can potentially be a new remedy for improving AD and other inflammatory diseases and predicting the intracellular signaling pathways and target genes involved. This therapeutic effect of the SRE on AD can be used to treat DNCB-induced AD and its associated symptoms.

8.
Int J Med Sci ; 21(4): 681-689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464827

RESUMEN

Background: The exposure of the human skin to particulate matter 2.5 (PM2.5) results in adverse health outcomes, such as skin aging, wrinkle formation, pigment spots, and atopic dermatitis. It has previously been shown that rosmarinic acid (RA) can protect keratinocytes from ultraviolet B radiation by enhancing cellular antioxidant systems and reducing oxidative damage; however, its protective action against the adverse effects of PM2.5 on skin cells remains unclear. Therefore, in this study, we explored the mechanism underlying the protective effects of RA against PM2.5-mediated oxidative stress in HaCaT keratinocytes. Methods: HaCaT keratinocytes were pretreated with RA and exposed to PM2.5. Thereafter, reactive oxygen species (ROS) production, protein carbonylation, lipid peroxidation, DNA damage, and cellular apoptosis were investigated using various methods, including confocal microscopy, western blot analysis, and flow cytometry. Results: RA significantly inhibited PM2.5-induced lipid peroxidation, protein carbonylation, DNA damage, increases in intracellular Ca2+ level, and mitochondrial depolarization. It also significantly attenuated PM2.5-induced apoptosis by downregulating Bcl-2-associated X, cleaved caspase-9, and cleaved caspase-3 protein levels, while upregulating B-cell lymphoma 2 protein level. Further, our results indicated that PM2.5-induced apoptosis was associated with the activation of the mitogen-activated protein kinase (MAPK) signaling pathway and that MAPK inhibitors as well as RA exhibited protective effects against PM2.5-induced apoptosis. Conclusion: RA protected HaCaT cells from PM2.5-induced apoptosis by lowering oxidative stress.


Asunto(s)
Material Particulado , Ácido Rosmarínico , Humanos , Material Particulado/toxicidad , Línea Celular , Queratinocitos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis
9.
Environ Pollut ; 347: 123675, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447650

RESUMEN

Stimulation of human keratinocytes with particulate matter 2.5 (PM2.5) elicits complex signaling events, including a rise in the generation of reactive oxygen species (ROS). However, the mechanisms underlying PM2.5-induced ROS production remain unknown. Here, we show that PM2.5-induced ROS production in human keratinocytes is mediated via the NADPH oxidase (NOXs) system and the Ca2+ signaling pathway. PM2.5 treatment increased the expression of NOX1, NOX4, and a calcium-sensitive NOX, dual oxidase 1 (DUOX1), in human epidermal keratinocyte cell line. PM2.5 bound to aryl hydrocarbon receptor (AhR), and this complex bound to promoter regions of NOX1 and DUOX1, suggesting that AhR acted as a transcription factor of NOX1 and DUOX1. PM2.5 increased the transcription of DUOX1 via epigenetic modification. Moreover, a link between DNA demethylase and histone methyltransferase with the promoter regions of DUOX1 led to an elevation in the expression of DUOX1 mRNA. Interestingly, PM2.5 increased NOX4 expression and promoted the interaction of NOX4 and Ca2+ channels within the cytoplasmic membrane or endoplasmic reticulum, leading to Ca2+ release. The increase in intracellular Ca2+ concentration activated DUOX1, responsible for ROS production. Our findings provide evidence for a PM2.5-mediated ROS-generating system network, in which increased NOX1, NOX4, and DUOX1 expression serves as a ROS signal through AhR and Ca2+ activation.


Asunto(s)
NADPH Oxidasas , Receptores de Hidrocarburo de Aril , Humanos , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidasas Duales/genética , Oxidasas Duales/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Material Particulado/toxicidad , Epigénesis Genética
10.
Anticancer Res ; 44(3): 1079-1086, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423648

RESUMEN

BACKGROUND/AIM: Melanoma is a prevalent malignant tumor that arises from melanocytes. The treatment of malignant melanoma has become challenging due to the development of drug resistance. It is, therefore, imperative to identify novel therapeutic drug candidates for controlling malignant melanoma. Naringenin is a flavonoid abundant in oranges and other citrus fruits and recognized for its numerous medicinal benefits. The objective of the study was to assess the anti-carcinogenic potential of naringenin by evaluating its ability to regulate the cellular production of reactive oxygen species (ROS) and its effect on mitochondrial function and apoptosis in melanoma cells. MATERIALS AND METHODS: Cell viability, intracellular ROS levels, cell apoptosis, and mitochondrial functions were evaluated. RESULTS: Naringenin decreased melanoma cell viability and triggered generation of ROS, leading to cell apoptosis. In addition, it stimulated mitochondrial damage in melanoma cells by elevating the levels of Ca2+ and ROS in the mitochondria and decreasing cellular ATP. Naringenin stimulated the expression of proapoptotic proteins, including phospho p53, B-cell lymphoma-2 (Bcl-2)-associated X protein, cleaved caspase-3, and cleaved caspase-9, in melanoma cells in a time-dependent manner. Furthermore, it reduced the expression of the anti-apoptotic protein Bcl-2. Naringenin triggered cell apoptosis by phosphorylating c-Jun N-terminal kinase and stimulating cellular autophagy. CONCLUSION: Naringenin caused oxidative stress and mitochondrial damage, and activated autophagy in melanoma cells, leading to cell apoptosis. These findings indicate the potential of naringenin as a new therapeutic candidate for melanoma.


Asunto(s)
Flavanonas , Melanoma , Humanos , Especies Reactivas de Oxígeno/metabolismo , Melanoma/patología , Línea Celular Tumoral , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Potencial de la Membrana Mitocondrial
11.
Biomol Ther (Seoul) ; 32(1): 84-93, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38148554

RESUMEN

Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.

13.
Antioxidants (Basel) ; 12(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37627511

RESUMEN

Skin is a direct target of fine particulate matter (PM2.5), as it is constantly exposed. Herein, we investigate whether Korean red ginseng (KRG) can inhibit PM2.5-induced senescence in skin keratinocytes. PM2.5-treated human keratinocyte cell lines and normal human epidermal keratinocytes showed characteristics of cellular senescence, including flat and enlarged forms; however, KRG suppressed them in both cell types. Moreover, while cells exposed to PM2.5 showed a higher level of p16INK4A expression (a senescence inducer), KRG inhibited its expression. Epigenetically, KRG decreased the expression of the ten-eleven translocation (TET) enzyme, a DNA demethylase induced by PM2.5, and increased the expression of DNA methyltransferases suppressed by PM2.5, resulting in the decreased methylation of the p16INK4A promoter region. Additionally, KRG decreased the expression of mixed-lineage leukemia 1 (MLL1), a histone methyltransferase, and histone acetyltransferase 1 (HAT1) induced by PM2.5. Contrastingly, KRG increased the expression of the enhancer of zeste homolog 2, a histone methyltransferase, and histone deacetyltransferase 1 reduced by PM2.5. Furthermore, KRG decreased TET1, MLL1, and HAT1 binding to the p16INK4A promoter, corresponding with the decreased mRNA expression of p16INK4A. These results suggest that KRG exerts protection against the PM2.5-induced senescence of skin keratinocytes via the epigenetic regulation of p16INK4A.

14.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445726

RESUMEN

Diabetic retinopathy (DR) is the leading cause of vision loss and a critical complication of diabetes with a very complex etiology. The build-up of reactive oxygen species (ROS) due to hyperglycemia is recognized as a primary risk factor for DR. Although spermidine, a naturally occurring polyamine, has been reported to have antioxidant effects, its effectiveness in DR has not yet been examined. Therefore, in this study, we investigated whether spermidine could inhibit high glucose (HG)-promoted oxidative stress in human retinal pigment epithelial (RPE) cells. The results demonstrated that spermidine notably attenuated cytotoxicity and apoptosis in HG-treated RPE ARPE-19 cells, which was related to the inhibition of mitochondrial ROS production. Under HG conditions, interleukin (IL)-1ß and IL-18's release levels were markedly increased, coupled with nuclear factor kappa B (NF-κB) signaling activation. However, spermidine counteracted the HG-induced effects. Moreover, the expression of nucleotide-binding oligomerization domain-like receptor (NLR) protein 3 (NLRP3) inflammasome multiprotein complex molecules, including TXNIP, NLRP3, ASC, and caspase-1, increased in hyperglycemic ARPE-19 cells, but spermidine reversed these molecular changes. Collectively, our findings demonstrate that spermidine can protect RPE cells from HG-caused injury by reducing ROS and NF-κB/NLRP3 inflammasome pathway activation, indicating that spermidine could be a potential therapeutic compound for DR treatment.


Asunto(s)
Retinopatía Diabética , Inflamasomas , Humanos , Inflamasomas/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Espermidina/farmacología , Estrés Oxidativo , Glucosa/toxicidad , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo
15.
J Cancer Prev ; 28(2): 40-46, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37434796

RESUMEN

Excessive UVB exposure causes development of both malignant and non-malignant melanoma via the secretion of α-melanocyte-stimulating hormone (α-MSH). We investigated whether baicalein (5,6,7-trihydroxyflavone) could inhibit α-MSH-stimulated melanogenesis. Baicalein prevented UVB- and α-MSH-induced melanin production and attenuated α-MSH-stimulated tyrosinase (monophenol monooxygenase) activity, and expression of tyrosinase and tyrosine-related protein-2. In addition, baicalein prevented melanogenesis and pigmentation via the p38 mitogen-activated protein kinases signaling pathway. These findings suggest that baicalein represents a natural compound for attenuating melanogenesis.

16.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372037

RESUMEN

Cellular senescence can be activated by several stimuli, including ultraviolet radiation and air pollutants. This study aimed to evaluate the protective effect of marine algae compound 3-bromo-4,5-dihydroxybenzaldehyde (3-BDB) on particulate matter 2.5 (PM2.5)-induced skin cell damage in vitro and in vivo. The human HaCaT keratinocyte was pre-treated with 3-BDB and then with PM2.5. PM2.5-induced reactive oxygen species (ROS) generation, lipid peroxidation, mitochondrial dysfunction, DNA damage, cell cycle arrest, apoptotic protein expression, and cellular senescence were measured using confocal microscopy, flow cytometry, and Western blot. The present study exhibited PM2.5-generated ROS, DNA damage, inflammation, and senescence. However, 3-BDB ameliorated PM2.5-induced ROS generation, mitochondria dysfunction, and DNA damage. Furthermore, 3-BDB reversed the PM2.5-induced cell cycle arrest and apoptosis, reduced cellular inflammation, and mitigated cellular senescence in vitro and in vivo. Moreover, the mitogen-activated protein kinase signaling pathway and activator protein 1 activated by PM2.5 were inhibited by 3-BDB. Thus, 3-BDB suppressed skin damage induced by PM2.5.

17.
Ecotoxicol Environ Saf ; 249: 114443, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321662

RESUMEN

Air pollution is an emerging cause of mortality, affecting nearly 5 million people each year. Exposure to diesel exhaust fine particulate matter (PM2.5) aggravates respiratory and skin conditions. However, its impact on the protective immunity of the skin remains poorly understood. This study aimed to investigate the underlying molecular mechanism for adverse effects of PM2.5 on the host protective immunity using in vitro cell and in vivo mouse model. Intracellular translocation of Toll-like receptor 9 (TLR9) and CpG-DNA internalization were assessed in dendritic cells without or with PM2.5 treatment using immunofluorescence staining. Cytokine and nitric oxide production were measured in dendritic cells and macrophages without or with PM2.5 treatment. NF-κB and MAPK signaling was determined using western blotting. Skin disease severity, bacterial loads, and cytokine production were assessed in cutaneous Staphylococcus aureus (S. aureus) infection mouse model. PM2.5 interfered with TLR9 activation by inhibiting both TLR9 trafficking to early endosomes and CpG-DNA internalization via clathrin-mediated endocytosis. In addition, exposure to PM2.5 inhibited various TLR-mediated nitric oxide and cytokine production as well as MAPK and NF-κB signaling. PM2.5 rendered mice more susceptible to staphylococcal skin infections. Our results suggest that exposure to PM impairs TLR signaling and dampens the host defense against staphylococcal skin infections. Our data provide a novel perspective into the impact of PM on protective immunity which is paramount to revealing air pollutant-mediated toxicity on the host immunity.


Asunto(s)
Infecciones Estafilocócicas , Infecciones Cutáneas Estafilocócicas , Humanos , Animales , Ratones , Material Particulado/toxicidad , Receptor Toll-Like 9 , Emisiones de Vehículos , FN-kappa B , Staphylococcus aureus , Óxido Nítrico , Receptores Toll-Like , Citocinas , Infecciones Cutáneas Estafilocócicas/inducido químicamente , Infecciones Estafilocócicas/inducido químicamente , Infecciones Estafilocócicas/microbiología , ADN
18.
Nutrients ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36558517

RESUMEN

Hair loss remains a significant problem that is difficult to treat; therefore, there is a need to identify safe natural materials that can help patients with hair loss. We evaluated the hair anagen activation effects of limonin, which is abundant in immature citrus fruits. Limonin increased the proliferation of rat dermal papilla cells (rDPC) by changing the levels of cyclin D1 and p27, and increasing the number of BrdU-positive cells. Limonin increased autophagy by decreasing phosphorylated mammalian target of rapamycin levels and increasing the phospho-Raptor, ATG7 and LC3B. Limonin also activated the Wnt/ß-catenin pathway by increasing phospho-ß-catenin levels. XAV939, a Wnt/ß-catenin inhibitor, inhibited these limonin-induced changes, including induced autophagy, BrdU-positive cells, and cell proliferation. Limonin increased the phosphorylated AKT levels in both two-dimensional cultured rDPC and three-dimensional spheroids. Treatment with the PI3K inhibitor wortmannin inhibited limonin-induced proliferation, and disrupted other limonin-mediated changes, including decreased p27, increased BrdU-positive cells, induced autophagy, and increased ATG7 and LC3B levels. Wortmannin also inhibited limonin-induced cyclin D1 and LC3 expression in spheroids. Collectively, these results indicate that limonin can enhance anagen signaling by activating autophagy via targeting the Wnt/ß-catenin and/or PI3K/AKT pathways in rDPC, highlighting a candidate nutrient for hair loss treatment.


Asunto(s)
Folículo Piloso , Limoninas , Animales , Ratas , Alopecia , beta Catenina/metabolismo , Bromodesoxiuridina/metabolismo , Proliferación Celular , Células Cultivadas , Ciclina D1/metabolismo , Frutas/metabolismo , Limoninas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vía de Señalización Wnt , Wortmanina/metabolismo , Wortmanina/farmacología
19.
Nutrients ; 14(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36079818

RESUMEN

Ginseng (Panax ginseng Meyer) has been used in East Asian traditional medicine for a long time. Korean red ginseng (KRG) is effective against several disorders, including cancer. The cytotoxic effects of KRG extract in terms of autophagy- and apoptosis-mediated cell death and its mechanisms were investigated using human colorectal cancer lines. KRG induced autophagy-mediated cell death with enhanced expression of Atg5, Beclin-1, and LC3, and formed characteristic vacuoles in HCT-116 and SNU-1033 cells. An autophagy inhibitor prevented cell death induced by KRG. KRG generated mitochondrial reactive oxygen species (ROS); antioxidant countered this effect and decreased autophagy. KRG caused apoptotic cell death by increasing apoptotic cells and sub-G1 cells, and by activating caspases. A caspase inhibitor suppressed cell death induced by KRG. KRG increased phospho-Bcl-2 expression, but decreased Bcl-2 expression. Moreover, interaction of Bcl-2 with Beclin-1 was attenuated by KRG. Ginsenoside Rg2 was the most effective ginsenoside responsible for KRG-induced autophagy- and apoptosis-mediated cell death. KRG induced autophagy- and apoptosis-mediated cell death via mitochondrial ROS generation, and thus its administration may inhibit colon carcinogenesis.


Asunto(s)
Neoplasias , Panax , Apoptosis , Autofagia , Beclina-1 , Humanos , Panax/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36139782

RESUMEN

Neurodegenerative diseases are associated with neuronal cell death through apoptosis. Apoptosis is tightly associated with the overproduction of reactive oxygen species (ROS), and high glucose levels contribute to higher oxidative stress in diabetic patients. Hesperidin, a natural active compound, has been reported to scavenge free radicals. Only a few studies have explored the protective effects of hesperidin against high glucose-induced apoptosis in SH-SY5Y neuronal cells. Glucose stimulated neuronal cells to generate excessive ROS and caused DNA damage. In addition, glucose triggered endoplasmic reticulum stress and upregulated cytoplasmic as well as mitochondrial calcium levels. Hesperidin inhibited glucose-induced ROS production and mitigated the associated DNA damage and endoplasmic reticulum stress. The downregulation of antiapoptotic protein Bcl-2 following glucose treatment was reversed by a hesperidin treatment. Furthermore, hesperidin repressed the glucose-induced Bcl-2-associated X protein, cleaved caspase-9, and cleaved caspase-3. Hesperidin also suppressed the glucose-induced phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase. The current results confirmed that hesperidin could protect neuronal cells against glucose-induced ROS. Mechanistically, hesperidin was shown to promote cell viability via attenuation of the mitogen-activated protein kinase signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...