Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 79(15): 6946-58, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24984113

RESUMEN

A novel method for the preparation of structurally diverse fullerene derivatives, which relies on the use of single electron transfer (SET)-promoted photochemical reactions between fullerene C60 and α-trimethylsilylamines, has been developed. Photoirradiation of 10% EtOH-toluene solutions containing C60 and α-silylamines leads to high-yielding, regioselective formation of 1,2-adducts that arise through a pathway in which sequential SET-desilylation occurs to generate α-amino and C60 anion radical pair intermediates, which undergo C-C bond formation. Protonation of generated α-aminofullerene anions gives rise to formation of monoaddition products that possess functionalized α-aminomethyl-substituted 1,2-dihydrofullerene structures. Observations made in this effort show that the use of EtOH in the solvent mixture is critical for efficient photoproduct formation. In contrast to typical thermal and photochemical strategies devised previously for the preparation of fullerene derivatives, the new photochemical approach takes place under mild conditions and does not require the use of excess amounts of substrates. Thus, the method developed in this study could broaden the scope of fullerene chemistry by providing a simple photochemical strategy for large-scale preparation of highly substituted fullerene derivatives. Finally, the α-aminomethyl-substituted 1,2-dihydrofullerene photoadducts are observed to undergo photoinduced fragmentation reactions to produce C60 and the corresponding N-methylamines.


Asunto(s)
Fulerenos/química , Compuestos de Organosilicio/síntesis química , Transporte de Electrón , Estructura Molecular , Compuestos de Organosilicio/química , Fotoquímica
2.
J Am Chem Soc ; 126(4): 1110-24, 2004 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-14746480

RESUMEN

The results of studies designed to obtain information about the factors that control the chemical efficiencies/regioselectivities and quantum yields of single electron transfer (SET)-promoted reactions of acceptor-polydonor systems are reported. Photochemical and photophysical investigations were carried out with bis-donor tethered phthalimides and naphthalimides of general structure N-phthalimido- and N-naphthalimido-CH2CH2-D-CH2CH2-NMsCH2-E (E = SiMe3 or CO2NBu4 and D = NMs, O, S, and NMe). These substrates contain common terminal donor groups (NMsCH2SiMe3 or NMsCH2CO2NBu4) that have known oxidation potentials and cation radical fragmentation rates. Oxidation potentials and fragmentation rates at the other donor site in each of these substrates are varied by incorporating different heteroatoms and/or substituents. Photoproduct distribution, reaction quantum yield, and fluorescence quantum yield measurements were made. The results show that photocyclization reactions of alpha-trimethylsilylmethansulfonamide (E = SiMe3)- and alpha-carboxymethansulfonamide (E = CO2NBu4)-terminated phthalimides and naphthalimides that contain internal sulfonamide, ether, and thioether donor sites (D = NMs, O, or S) are chemically efficient (80-100%) and that they take place exclusively by a pathway involving sequential photoinduced SET (zwitterionic biradical desilylation or decarboxylation) biradical cyclization. In contrast, photoreactions of alpha-trimethylsilylmethansulfonamide- and alpha-carboxymethansulfonamide-terminated phthalimides and naphthalimides that that contain an internal tertiary amine donor site (D = NMe) are chemically inefficient and follow a pathway involving alpha-deprotonation at the tertiary amine radical cation center in intermediate, iminium radical-containing, zwitterionic biradicals. In addition, the quantum efficiencies for photoreactions of alpha-trimethylsilylmethansulfonamide- and alpha-carboxymethansulfonamide-terminated phthalimides are dependent on the nature of the internal donor (eg., phi = 0.12 for D = NMs, E = SiMe3; phi = 0.02 for D = S, E = SiMe3; phi = 0.04 for D = NMe, E = SiMe3). The results of this effort are discussed in terms of how the relative energies of interconverting zwitterionic biradical intermediates and the energy barriers for their alpha-heterolytic fragmentation reactions influence the chemical yields and quantum efficiencies of SET promoted photocyclization reactions of acceptor-polydonor substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...