Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22280138

RESUMEN

Africa accounts for 1.5% of the global coronavirus disease 2019 (COVID-19) cases and 2.7% of deaths, but this low incidence has been partly attributed to the limited testing capacity in most countries. In addition, the population in many African countries is at high risk of infection with endemic infectious diseases such as malaria. Our aim is to determine the prevalence and circulation of SARS-CoV-2 variants, and the frequency of co-infection with the malaria parasite. We conducted serological tests and microscopy examinations on 998 volunteers of different ages and sexes in a random and stratified population sample in Burkina-Faso. In addition, nasopharyngeal samples were taken for RT-qPCR of SARS-COV-2 and for whole viral genome sequencing. Our results show a 3.2% and a 2.5% of SARS-CoV-2 seroprevalence and PCR positivity; and 22% of malaria incidence, over the sampling period, with marked differences linked to age. Importantly, we found 2 cases of confirmed co-infection and 8 cases of suspected co-infection mostly in children. Finally, we report the genome sequences of 13 SARS-CoV-2 isolates circulating in Burkina Faso at the time of analysis, assigned to lineages A.19, A.21, B.1.1.404, B.1.1.118, B.1 and grouped into clades; 19B, 20A and 20B. This is the first population-based study about SARS-CoV-2 and malaria in Burkina Faso during the first wave of the pandemic, providing a relevant estimation of the real prevalence of SARS-CoV-2 and variants circulating in this Sub-Saharan African country. Besides, it highlights the low frequency of co-infection with malaria in African communities.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22277747

RESUMEN

BackgroundStudies investigating the cumulative incidence of and immune status against SARS-CoV-2 infection provide valuable information for shaping public health decision-making. MethodsThe current cross-sectional, population-based study, conducted in April 2022 in the Valencian Community (VC), recruited 935 participants of all ages. Anti-SARS-CoV-2-Receptor Binding Domain-RBD-total antibodies and anti-Nucleocapsid (N)- IgGs were measured by electrochemiluminescence assays. To account for past SARS-CoV-2 infection the VC microbiology registry (RedMiVa) was interrogated. |Quantitation of neutralizing antibodies (NtAb) against the ancestral and Omicron BA.1 and BA.2 (sub)variants by an S-pseudotyped neutralization assay and for enumeration of SARS-CoV-2-S specific-IFN{gamma}-producing CD4+ and CD8+ T cells by Intracellular Cytokine Staining assay was performed in a subset of participants (n=100 and 137, respectively). FindingsThe weighted cumulative incidence was 51{square}9% (95% CI, 48{square}7-55{square}1), and was inversely related to age. Anti-RBD total antibodies were detected in 906/931 (97{square}3%) participants, those vaccinated and SARS-CoV-2-experienced (VAC-ex;=442) displaying higher levels (P<0.001) than vaccinated/naive (VAC-n;(n=472) and non-vaccinated/experienced (UNVAC-ex; n(n=63). Antibody levels correlated inversely with the time elapsed since receipt of last vaccine dose in VAC-n (Rho, -0{square}52; 95% CI, -0{square}59 to -0{square}45; P<0.001) but not in VAC-ex. NtAbs against Omicron BA.1 were detected in 94%, 75% and 50% of VAC-ex, VAC-n and UNVAC-ex groups, respectively, while in 97%, 84% and 40%, against Omicron BA.2. SARS-CoV-2-S-reactive IFN-{gamma} T cells were detected in 73%, 75%, and 64% for VAC-ex, VAC-n, UNVAC-ex, respectively. InterpretationBy April 2022 around half of the VC population had been infected with SARS-CoV-2 and due to extensive vaccination display hybrid immunity. The large percentage of participants with detectable functional antibody and T-cell responses against SARS-CoV-2, which may be cross-reactive to some extent, points towards lower expected severity than in previous waves. FundingThis research was supported in part by the European Commission NextGenerationEU fund (CSICs Global Health Platform).

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-471263

RESUMEN

The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has now reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253075

RESUMEN

Molecular epidemiology of SARS-CoV-2 aims to monitor the appearance of new variants with the potential to change the virulence or transmissibility of the virus. During the first year of SARS-CoV-2 evolution, numerous variants with possible public health impact have emerged. We have detected two mutations in the Spike protein at amino acid positions 1163 and 1167 that have appeared independently multiple times in different genetic backgrounds, indicating they may increase viral fitness. Interestingly, the majority of these sequences appear in transmission clusters, with the genotype encoding mutations at both positions increasing in frequency more than single-site mutants. This genetic outcome that we denote as Lineage B.1.177.637, belongs to clade 20E and includes 12 additional single nucleotide polymorphisms but no deletions with respect to the reference genome (first sequence in Wuhan). B.1.177.637 appeared after the first wave of the epidemic in Spain, and subsequently spread to eight additional countries, increasing in frequency among sequences in public databases. Positions 1163 and 1167 of the Spike protein are situated in the HR2 domain, which is implicated in the fusion of the host and viral membranes. To better understand the effect of these mutations on the virus, we examined whether B.1.177.637 altered infectivity, thermal stability, or antibody sensitivity. Unexpectedly, we observed reduced infectivity of this variant relative to the ancestral 20E variant in vitro while the levels of viral RNA in nasopharyngeal swabs did not vary significantly. In addition, we found the mutations do not impact thermal stability or antibody susceptibility in vaccinated individuals but display a moderate reduction in sensitivity to neutralization by convalescent sera from early stages of the pandemic. Altogether, this lineage could be considered a Variant of Interest (VOI), we denote VOI1163.7. Finally, we detected a sub-cluster of sequences within VOI1163.7 that have acquired two additional changes previously associated with antibody escape and it could be identified as VOI1163.7.V2. Overall, we have detected the spread of a new Spike variant that may be advantageous to the virus and whose continuous transmission poses risks by the acquisition of additional mutations that could affect pre-existing immunity.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21251355

RESUMEN

The use of SARS-CoV-2 metagenomics in wastewater can allow the detection of variants circulating at community level. After comparing with clinical databases, we identified three novel variants in the spike gene, and six new variants in the spike detected for the first time in Spain. We finally support the hypothesis that this approach allows the identification of unknown SARS-CoV-2 variants or detected at only low frequencies in clinical genomes.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248328

RESUMEN

The COVID-19 pandemic has shaken the world since the beginning of 2020. Spain is among the European countries with the highest incidence of the disease during the first pandemic wave. We established a multidisciplinar consortium to monitor and study the evolution of the epidemic, with the aim of contributing to decision making and stopping rapid spreading across the country. We present the results for 2170 sequences from the first wave of the SARS-Cov-2 epidemic in Spain and representing 12% of diagnosed cases until 14th March. This effort allows us to document at least 500 initial introductions, between early February-March from multiple international sources. Importantly, we document the early raise of two dominant genetic variants in Spain (Spanish Epidemic Clades), named SEC7 and SEC8, likely amplified by superspreading events. In sharp contrast to other non-Asian countries those two variants were closely related to the initial variants of SARS-CoV-2 described in Asia and represented 40% of the genome sequences analyzed. The two dominant SECs were widely spread across the country compared to other genetic variants with SEC8 reaching a 60% prevalence just before the lockdown. Employing Bayesian phylodynamic analysis, we inferred a reduction in the effective reproductive number of these two SECs from around 2.5 to below 0.5 after the implementation of strict public-health interventions in mid March. The effects of lockdown on the genetic variants of the virus are reflected in the general replacement of preexisting SECs by a new variant at the beginning of the summer season. Our results reveal a significant difference in the genetic makeup of the epidemic in Spain and support the effectiveness of lockdown measures in controlling virus spread even for the most successful genetic variants. Finally, earlier control of SEC7 and particularly SEC8 might have reduced the incidence and impact of COVID-19 in our country.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20219063

RESUMEN

Following its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic resulting in unprecedented efforts to reduce transmission and develop therapies and vaccines (WHO Emergency Committee, 2020; Zhu et al., 2020). Rapidly generated viral genome sequences have allowed the spread of the virus to be tracked via phylogenetic analysis (Worobey et al., 2020; Hadfield et al., 2018; Pybus et al., 2020). While the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced, allowing continent-specific variants to emerge. However, within Europe travel resumed in the summer of 2020, and the impact of this travel on the epidemic is not well understood. Here we report on a novel SARS-CoV-2 variant, 20E (EU1), that emerged in Spain in early summer, and subsequently spread to multiple locations in Europe. We find no evidence of increased transmissibility of this variant, but instead demonstrate how rising incidence in Spain, resumption of travel across Europe, and lack of effective screening and containment may explain the variants success. Despite travel restrictions and quarantine requirements, we estimate 20E (EU1) was introduced hundreds of times to countries across Europe by summertime travellers, likely undermining local efforts to keep SARS-CoV-2 cases low. Our results demonstrate how a variant can rapidly become dominant even in absence of a substantial transmission advantage in favorable epidemiological settings. Genomic surveillance is critical to understanding how travel can impact SARS-CoV-2 transmission, and thus for informing future containment strategies as travel resumes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the first pandemic where the spread of a viral pathogen has been globally tracked in near real-time using phylogenetic analysis of viral genome sequences (Worobey et al., 2020; Hadfield et al., 2018; Pybus et al., 2020). SARS-CoV-2 genomes continue to be generated at a rate far greater than for any other pathogen and more than 500,000 full genomes are available on GISAID as of February 2020 (Shu and McCauley, 2017). In addition to tracking the viral spread, these genome sequences have been used to monitor mutations which might change the transmission, pathogenesis, or anti-genic properties of the virus. One mutation in particular, D614G in the spike protein, has received much attention. This variant (Nextstrain clade 20A) seeded large outbreaks in Europe in early 2020 and subsequently dominated the outbreaks in the Americas, thereby largely replacing previously circulating lineages. This rapid rise led to the suggestion that this variant is more transmissible, which has since been corroborated by phylogenetic (Korber et al., 2020; Volz et al., 2020) and experimental evidence (Plante et al., 2020; Yurkovetskiy et al., 2020). Following the global dissemination of SARS-CoV-2 in early 2020 (Worobey et al., 2020), intercontinental travel dropped dramatically. Within Europe, however, travel and in particular holiday travel resumed in summer (though at lower levels than in previous years) with largely uncharacterized effects on the pandemic. Here we report on a novel SARS-CoV-2 variant 20E (EU1) (S:A222V) that emerged in early summer 2020, presumably in Spain, and subsequently spread to multiple locations in Europe. Over the summer, it rose in frequency in parallel in multiple countries. As we report here, this variant, 20E (EU1), and a second variant 20A.EU2 with mutation S477N in the spike protein accounted for the majority of sequences in Europe in the autumn of 2020.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...