Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(6): e17032, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37383211

RESUMEN

Shellfish sanitary controls are very important to guarantee consumer health because bivalve molluscs (BVM) are filter-feeders so they can accumulate pathogens, environmental contaminants and biotoxins produced by some algae, causing infections and food poisoning in humans after ingestion. The purpose of this work was to analyse with chemometric methods the historical data relating to routine analyses carried out by the competent authority (Liguria Local Health Unit, National Health Service) on the BVM reared in a shellfish farm located in the Gulf of La Spezia (Italy). Chemometric analysis was aimed at identifying any correlations between the variables, as well as any seasonal trends and similarities between the stations, in order to be able to provide further material for a more accurate risk assessment and to improve the monitoring organization for example by reducing sampling stations and/or sampling frequency. The dataset used included 31 variables classified as biotoxicological, microbiological and chemical variables, measured twice a week, monthly or half yearly respectively, for a total of 6 years (from 2015 to 2021), on samples of Mytilus galloprovincialis coming from 7 monitoring stations. The results obtained by the application of principal component analysis have shown positive alga-biotoxin correlations, as well as seasonal trends linked to algae growth, with a greater algal biomass and their toxins during the spring months. In addition, periods characterised by low rainfall were found to affect algal development, promoting especially species such as Dinophysis spp. Considering the microbiological and biotoxicological variables, significant differences between the monitoring stations were not found. However, stations could be distinguished on the basis of the nature of the predominant chemical pollutants.

2.
Pathogens ; 10(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34451408

RESUMEN

Depuration is generally the main treatment employed for bivalve mollusks harvested from contaminated sites. Commercial depuration has demonstrated to be effective for removal of bacterial pathogens, although it probably provides only limited efficacy against human enteric viruses. We evaluated the quantitative reduction of norovirus (NoV) genogroups I and II in naturally contaminated oysters after 1, 4, and 9 days of depuration. The process was conducted in an authorized depuration plant, and NoV concentration was determined by RT-qPCR according to ISO 15216-1:2017 method. Regardless of the NoV genogroup, our results showed no significant reduction in NoV concentration after 1 day of depuration. Higher mean reduction (68%) was obtained after 4 days of treatment, while no further increase was observed after 9 days. Overall, reduction was highly variable, and none of the trials showed statistically significant reduction in NoV RNA concentration at the end of each depuration period. Indeed, NoV concentration remained high in 70% of samples even after 9 days of depuration, with values ranging between 4.0 × 102 and 2.3 × 104 g.c./g. These results indicate that an extension of commercial depuration time does not appear to be effective for reducing or eliminating NoV in oysters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA