Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260584

RESUMEN

Cardiac disease progression reflects the dynamic interaction between adversely remodeled neurohumoral control systems and an abnormal cardiac substrate. Vagal nerve stimulation (VNS) is an attractive neuromodulatory option to dampen this dynamic interaction; however, it is limited by off-target effects. Spatially-selective VNS (sVNS) offers a promising solution to induce cardioprotection while mitigating off-target effects by specifically targeting pre-ganglionic parasympathetic efferent cardiac fibers. This approach also has the potential to enhance therapeutic outcomes by eliminating time-consuming titration required for optimal VNS. Recent studies have demonstrated the independent modulation of breathing rate, heart rate, and laryngeal contraction through sVNS. However, the spatial organization of afferent and efferent cardiac-related fibers within the vagus nerve remains unexplored. By using trial-and-error sVNS in vivo in combination with ex vivo micro-computed tomography fascicle tracing, we show the significant spatial separation of cardiac afferent and efferent fibers (179±55° SD microCT, p<0.05 and 200±137° SD, p<0.05 sVNS - degrees of separation across a cross-section of nerve) at the mid-cervical level. We also show that cardiac afferent fibers are located in proximity to pulmonary fibers consistent with recent findings of cardiopulmonary convergent neurons and circuits. We demonstrate the ability of sVNS to selectively elicit desired scalable heart rate decrease without stimulating afferent-related reflexes. By elucidating the spatial organization of cardiac-related fibers within the vagus nerve, our findings pave the way for more targeted neuromodulation, thereby reducing off-target effects and eliminating the need for titration. This, in turn, will enhance the precision and efficacy of VNS therapy in treating cardiac pathology, allowing for improved therapeutic efficacy.

2.
Philos Trans A Math Phys Eng Sci ; 381(2260): 20230176, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37742706

RESUMEN

The issue focuses on physics-informed machine learning and its applications for structural integrity and safety assessment of engineering systems/facilities. Data science and data mining are fields in fast development with a high potential in several engineering research communities; in particular, advances in machine learning (ML) are undoubtedly enabling significant breakthroughs. However, purely ML models do not necessarily carry physical meaning, nor do they generalize well to scenarios on which they have not been trained on. This is an emerging field of research that potentially will raise a huge impact in the future for designing new materials and structures, and then for their proper final assessment. This issue aims to update the current research state of the art, incorporating physics into ML models, and providing tools when dealing with material science, fatigue and fracture, including new and sophisticated algorithms based on ML techniques to treat data in real-time with high accuracy and productivity. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.

3.
Anal Bioanal Chem ; 415(24): 5961-5971, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37522918

RESUMEN

X-ray computed tomography was applied in imaging 3D-printed gyroids used for bioseparation in order to visualize and characterize structures from the entire geometry down to individual nanopores. Methacrylate prints were fabricated with feature sizes of 500 µm, 300 µm, and 200 µm, with the material phase exhibiting a porous substructure in all cases. Two X-ray scanners achieved pixel sizes from 5 µm to 16 nm to produce digital representations of samples across multiple length scales as the basis for geometric analysis and flow simulation. At the gyroid scale, imaged samples were visually compared to the original computed-aided designs to analyze printing fidelity across all feature sizes. An individual 500 µm feature, part of the overall gyroid structure, was compared and overlaid between design and imaged volumes, identifying individual printed layers. Internal subvolumes of all feature sizes were segmented into material and void phases for permeable flow analysis. Small pieces of 3D-printed material were optimized for nanotomographic imaging at a pixel size of 63 nm, with all three gyroid samples exhibiting similar geometric characteristics when measured. An average porosity of 45% was obtained that was within the expected design range, and a tortuosity factor of 2.52 was measured. Applying a voidage network map enabled the size, location, and connectivity of pores to be identified, obtaining an average pore size of 793 nm. Using Avizo XLAB at a bulk diffusivity of 7.00 × 10-11 m2s-1 resulted in a simulated material diffusivity of 2.17 × 10-11 m2s-1 ± 0.16 × 10-11 m2s-1.

4.
Front Neurosci ; 17: 963503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205051

RESUMEN

Introduction: Despite detailed characterization of fascicular organization of somatic nerves, the functional anatomy of fascicles evident in human and large mammal cervical vagus nerve is unknown. The vagus nerve is a prime target for intervention in the field of electroceuticals due to its extensive distribution to the heart, larynx, lungs, and abdominal viscera. However, current practice of the approved vagus nerve stimulation (VNS) technique is to stimulate the entire nerve. This produces indiscriminate stimulation of non-targeted effectors and undesired side effects. Selective neuromodulation is now a possibility with a spatially-selective vagal nerve cuff. However, this requires the knowledge of the fascicular organization at the level of cuff placement to inform selectivity of only the desired target organ or function. Methods and results: We imaged function over milliseconds with fast neural electrical impedance tomography and selective stimulation, and found consistent spatially separated regions within the nerve correlating with the three fascicular groups of interest, suggesting organotopy. This was independently verified with structural imaging by tracing anatomical connections from the end organ with microCT and the development of an anatomical map of the vagus nerve. This confirmed organotopic organization. Discussion: Here we show, for the first time, localized fascicles in the porcine cervical vagus nerve which map to cardiac, pulmonary and recurrent laryngeal function (N = 4). These findings pave the way for improved outcomes in VNS as unwanted side effects could be reduced by targeted selective stimulation of identified organ-specific fiber-containing fascicles and the extension of this technique clinically beyond the currently approved disorders to treat heart failure, chronic inflammatory disorders, and more.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36892017

RESUMEN

The zinc-ion battery is one of the promising candidates for next-generation energy storage devices beyond lithium technology due to the earth's abundance of Zn materials and their high volumetric energy density (5855 mA h cm-3). To date, the formation of Zn dendrites during charge-discharge cycling still hinders the practical application of zinc-ion batteries. It is, therefore, crucial to understand the formation mechanism of the zinc dendritic structure before effectively suppressing its growth. Here, the application of operando digital optical microscopy and in situ lab-based X-ray computed tomography (X-ray CT) is demonstrated to probe and quantify the morphologies of zinc electrodeposition/dissolution under multiple galvanostatic plating/stripping conditions in symmetric Zn||Zn cells. With the combined microscopy approaches, we directly observed the dynamic nucleation and subsequent growth of Zn deposits, the heterogeneous transportation of charged clusters/particles, and the evolution of 'dead' Zn particles via partial dissolution. Zn electrodeposition at the early stage is mainly attributed to activation, while the subsequent dendrite growth is driven by diffusion. The high current not only facilitates the formation of sharp dendrites with a larger mean curvature at their tips but also leads to dendritic tip splitting and the creation of a hyper-branching morphology. This approach offers a direct opportunity to characterize dendrite formation in batteries with a metal anode in the laboratory.

6.
Materials (Basel) ; 16(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36984252

RESUMEN

Metal lattice structures manufactured utilising additive techniques are attracting increasing attention thanks to the high structural efficiency they can offer. Although many studies exist on the characterisation of massive parts in Ti6Al4V processed by Electron Beam Melting (EBM), several investigations are necessary to characterise the Ti6Al4V lattice structures made by the EBM process. The objective of this paper is to develop a measurement method to assess the dimensional accuracy of Ti6Al4V octet truss lattice structures manufactured by EBM technology. Beam specimens with a 2 mm diameter and different growth orientations with respect to the build direction were analysed. The geometry differences between the designed and the manufactured beam specimens were highlighted. Two effects were identified: (i) The EBM-manufactured beams are generally thinner than the designed ones, and (ii) the shape of the section was found to be almost circular for the beam specimens oriented at 45° and 90°; on the contrary, the section of the horizontal beam (0°) cannot be considered circular.

7.
Nat Commun ; 14(1): 745, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788206

RESUMEN

Proton exchange membrane fuel cells, consuming hydrogen and oxygen to generate clean electricity and water, suffer acute liquid water challenges. Accurate liquid water modelling is inherently challenging due to the multi-phase, multi-component, reactive dynamics within multi-scale, multi-layered porous media. In addition, currently inadequate imaging and modelling capabilities are limiting simulations to small areas (<1 mm2) or simplified architectures. Herein, an advancement in water modelling is achieved using X-ray micro-computed tomography, deep learned super-resolution, multi-label segmentation, and direct multi-phase simulation. The resulting image is the most resolved domain (16 mm2 with 700 nm voxel resolution) and the largest direct multi-phase flow simulation of a fuel cell. This generalisable approach unveils multi-scale water clustering and transport mechanisms over large dry and flooded areas in the gas diffusion layer and flow fields, paving the way for next generation proton exchange membrane fuel cells with optimised structures and wettabilities.

8.
Am J Physiol Heart Circ Physiol ; 324(4): H553-H570, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36827229

RESUMEN

Chronic kidney disease (CKD) increases the risk of cardiovascular disease, including vascular calcification, leading to higher mortality. The release of calcifying extracellular vesicles (EVs) by vascular smooth muscle cells (VSMCs) promotes ectopic mineralization of vessel walls. Caveolin-1 (CAV1), a structural protein in the plasma membrane, plays a major role in calcifying EV biogenesis in VSMCs. Epidermal growth factor receptor (EGFR) colocalizes with and influences the intracellular trafficking of CAV1. Using a diet-induced mouse model of CKD followed by a high-phosphate diet to promote vascular calcification, we assessed the potential of EGFR inhibition to prevent vascular calcification. Furthermore, we computationally analyzed 7,651 individuals in the Multi-Ethnic Study of Atherosclerosis (MESA) and Framingham cohorts to assess potential correlations between coronary artery calcium and single-nucleotide polymorphisms (SNPs) associated with elevated serum levels of EGFR. Mice with CKD developed widespread vascular calcification, associated with increased serum levels of EGFR. In both the CKD mice and human VSMC culture, EGFR inhibition significantly reduced vascular calcification by mitigating the release of CAV1-positive calcifying EVs. EGFR inhibition also increased bone mineral density in CKD mice. Individuals in the MESA and Framingham cohorts with SNPs associated with increased serum EGFR exhibit elevated coronary artery calcium. Given that EGFR inhibitors exhibit clinical safety and efficacy in other pathologies, the current data suggest that EGFR may represent an ideal target to prevent pathological vascular calcification in CKD.NEW & NOTEWORTHY Here, we investigate the potential of epidermal growth factor receptor (EGFR) inhibition to prevent vascular calcification, a leading indicator of and contributor to cardiovascular morbidity and mortality. EGFR interacts and affects the trafficking of the plasma membrane scaffolding protein caveolin-1. Previous studies reported a key role for caveolin-1 in the development of specialized extracellular vesicles that mediate vascular calcification; however, no role of EGFR has been reported. We demonstrated that EGFR inhibition modulates caveolin-1 trafficking and hinders calcifying extracellular vesicle formation, which prevents vascular calcification. Given that EGFR inhibitors are clinically approved for other indications, this may represent a novel therapeutic strategy for vascular calcification.


Asunto(s)
Aterosclerosis , Vesículas Extracelulares , Insuficiencia Renal Crónica , Calcificación Vascular , Humanos , Ratones , Animales , Caveolina 1/metabolismo , Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/prevención & control , Receptores ErbB/genética , Receptores ErbB/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Aterosclerosis/metabolismo , Miocitos del Músculo Liso/metabolismo
9.
Adv Funct Mater ; 33(50): 2301857, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38495320

RESUMEN

Smart robotic devices remotely powered by magnetic field have emerged as versatile tools for wide biomedical applications. Soft magnetic elastomer (ME) composite membranes with high flexibility and responsiveness are frequently incorporated to enable local actuation for wireless sensing or cargo delivery. However, the fabrication of thin ME membranes with good control in geometry and uniformity remains challenging, as well as the optimization of their actuating performances under low fields (milli-Tesla). In this work, the development of ME membranes comprising of low-cost magnetic powder and highly soft elastomer through a simple template-assisted doctor blading approach, is reported. The fabricated ME membranes are controllable in size (up to centimetre-scale), thickness (tens of microns) and high particle loading (up to 70 wt.%). Conflicting trade-off effects of particle concentration upon magnetic responsiveness and mechanical stiffness are investigated and found to be balanced off as it exceeds 60 wt.%. A highly sensitive fibre-optic interferometric sensing system and a customized fibre-ferrule-membrane probe are first proposed to enable dynamic actuation and real-time displacement characterization. Free-standing ME membranes are magnetically excited under low field down to 2 mT, and optically monitored with nanometer accuracy. The fast and consistent responses of ME membranes showcase their promising biomedical applications in nanoscale actuation and sensing.

10.
Materials (Basel) ; 17(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38204041

RESUMEN

Brake pad linings are an essential part of the correct functioning of braking systems based on the use of pads and discs. Generally, the compounds used to make the gaskets are characterised by the use of over 20 sintered components, which allow friction coefficients that vary between 0.2 and 0.6 at temperatures up to 200 °C. In this work, a traditional compound was investigated under close-to-real conditions in order to evaluate the tribological behaviour at different temperatures. Finally, a model based on the proportionality between temperature increase and relative variation of the friction coefficient was proposed. From the experimental test, it was evident that the friction coefficient increased with the temperature, passing from 0.4 to 0.6 in the temperature range of 100 °C to 180 °C; however, a further temperature increment until 350 °C caused a reduction in the friction coefficient to 0.2. The proposed model was able to anticipate the abovementioned trend, especially at high temperatures.

11.
J Cardiovasc Dev Dis ; 9(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35735797

RESUMEN

Atherosclerotic plaque calcification directly contributes to the leading cause of morbidity and mortality by affecting plaque vulnerability and rupture risk. Small microcalcifications can increase plaque stress and promote rupture, whereas large calcifications can stabilize plaques. Drugs that target bone mineralization may lead to unintended consequences on ectopic plaque calcification and cardiovascular outcomes. Bisphosphonates, common anti-osteoporotic agents, have elicited unexpected cardiovascular events in clinical trials. Here, we investigated the role of bisphosphonate treatment and timing on the disruption or promotion of vascular calcification and bone minerals in a mouse model of atherosclerosis. We started the bisphosphonate treatment either before plaque formation, at early plaque formation times associated with the onset of calcification, or at late stages of plaque development. Our data indicated that long-term bisphosphonate treatment (beginning prior to plaque development) leads to higher levels of plaque calcification, with a narrower mineral size distribution. When given later in plaque development, we measured a wider distribution of mineral size. These morphological alterations might be associated with a higher risk of plaque rupture by creating stress foci. Yet, bone mineral density positively correlated with the duration of the bisphosphonate treatment.

12.
J R Soc Interface ; 19(190): 20220102, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35506211

RESUMEN

Insect load sensors, called campaniform sensilla (CS), measure strain changes within the cuticle of appendages. This mechanotransduction provides the neuromuscular system with feedback for posture and locomotion. Owing to their diverse morphology and arrangement, CS can encode different strain directions. We used nano-computed tomography and finite-element analysis to investigate how different CS morphologies within one location-the femoral CS field of the leg in the fruit fly Drosophila-interact under load. By investigating the influence of CS substructures' material properties during simulated limb displacement with naturalistic forces, we could show that CS substructures (i.e. socket and collar) influence strain distribution throughout the whole CS field. Altered socket and collar elastic moduli resulted in 5% relative differences in displacement, and the artificial removal of all sockets caused differences greater than 20% in cap displacement. Apparently, CS sockets support the distribution of distal strain to more proximal CS, while collars alter CS displacement more locally. Harder sockets can increase or decrease CS displacement depending on sensor location. Furthermore, high-resolution imaging revealed that sockets are interconnected in subcuticular rows. In summary, the sensitivity of individual CS is dependent on the configuration of other CS and their substructures.


Asunto(s)
Insectos , Mecanotransducción Celular , Animales , Fenómenos Biomecánicos , Biofisica , Insectos/fisiología , Sensilos
13.
Sci Adv ; 8(15): eabm2296, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35417227

RESUMEN

The oldest putative fossils occur as hematite filaments and tubes in jasper-carbonate banded iron formations from the 4280- to 3750-Ma Nuvvuagittuq Supracrustal Belt, Québec. If biological in origin, these filaments might have affinities with modern descendants; however, if abiotic, they could indicate complex prebiotic forms on early Earth. Here, we report images of centimeter-size, autochthonous hematite filaments that are pectinate-branching, parallel-aligned, undulated, and containing Fe2+-oxides. These microstructures are considered microfossils because of their mineral associations and resemblance to younger microfossils, modern Fe-bacteria from hydrothermal environments, and the experimental products of heated Fe-oxidizing bacteria. Additional clusters of irregular hematite ellipsoids could reflect abiotic processes of silicification, producing similar structures and thus yielding an uncertain origin. Millimeter-sized chalcopyrite grains within the jasper-carbonate rocks have 34S- and 33S-enrichments consistent with microbial S-disproportionation and an O2-poor atmosphere. Collectively, the observations suggest a diverse microbial ecosystem on the primordial Earth that may be common on other planetary bodies, including Mars.

14.
J Colloid Interface Sci ; 617: 94-105, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35272170

RESUMEN

HYPOTHESIS: Transport of suspended colloids in heterogeneous porous media is a multi-scale process that exhibits anomalous behavior and cannot be described by the Fickian dispersion theory. Although many studies have documented colloids' transport at different length scales, a theoretical basis that links pore- to core-scale observations remains lacking. It is hypothesized that a recently proposed pore-scale statistical kinetic theory is able to capture the results observed experimentally. EXPERIMENTS: We implement a multi-scale approach via conducting core-flooding experiments of colloidal particles in a sandstone sample, simulating particles flowing through a sub-volume of the rock's digital twin, and developing a core-scale statistical theory for particles' residence times via upscaling the pore-scale kinetic theory. Experimental and computational results for solute transport are used as benchmark. FINDINGS: Based on good agreement across the scales achieved in our investigation, we show that the macroscopically observed anomalous transport is particle-type dependent and stems from particles' microscopic dispersion and deposition in heterogeneous flow fields. In particular, we reveal that residence-time distributions (i.e., breakthrough curve) obey a closed-form function that encompasses particles' microscopic dynamics, which allows investigations of a whole transition from pre-asymptotic to asymptotic behavior. The physical insights attained could be useful for interpreting experimental data and designing colloidal tracers.

15.
Int J Legal Med ; 136(5): 1391-1406, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35141777

RESUMEN

The evaluation of 3D printed osteological materials has highlighted the difficulties associated with accurately representing fine surface details on printed bones. Moreover, there is an increasing need for reconstructions to be demonstrably accurate and reliable for use in the criminal justice system. The aim of this study was to assess the surface quality of 3D prints (n = 9) that presented with micromorphological alterations from trauma, taphonomy and pathology processes. The archaeological bones were imaged using micro-CT scanning and 3D printed with selective laser sintering (SLS) printing. A multi-method experimental approach subsequently identified: (1) the 3D printed bones to be metrically accurate to within 1.0 mm; (2) good representation of micromorphological surface features overall, albeit with some loss of intricate details, depths, and fine textures that can be important for visual processing; (3) five of the nine 3D printed bones were quantitatively scored as accurate using the visual comparison method; and, (4) low mesh comparison distances (± 0.2 mm) between the original models and the digitised 3D print models. The findings offer empirical data that can be used to underpin 3D printed reconstructions of exhibits for use in courts of law. In addition, an adaptable pathway was presented that can be used to assess 3D print accuracy in future reconstructions.


Asunto(s)
Huesos , Impresión Tridimensional , Huesos/diagnóstico por imagen , Humanos , Rayos Láser , Tomografía Computarizada por Rayos X
16.
Small Methods ; 5(5): e2001193, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34928101

RESUMEN

Rechargeable Mg/S batteries have the potential to provide a compelling battery for a range of applications owing to their high capacity and gravimetric energy density, safety, and low-cost construction. However, the Mg/S energy storage is not widely developed and deployed due to technical challenges, which include short cycle lifespan and lack of suitable electrolyte. To study the microstructure degradation of Mg/S batteries, multiscale X-ray tomography, an inherently nondestructive method, is performed on dismantled Swagelok Mg/S cells comprising a graphene-sulfur cathode and a super-P separator. For the first time, 3D microstructure visualization and quantification reveal the dissolution (volume fraction decreases from 13.5% to 0.7%, surface area reduces from 2.91 to 1.74 µm2 µm-3 ) and agglomeration of sulfur particles, and the carbon binder densification after 10 cycles. Using tomography data, the image-based simulations are then performed. The results show that the insoluble polysulfides can inevitably block the Mg2+ transportation via shuttle effect. The representative volume should exceed 8200 µm3 to represent bulk cathode. This work elucidates that the Mg/S cell performance is significantly affected by microstructural degradation, and moreover demonstrates how multiscale and multimodal characterization can play an indispensable role in developing and optimizing the Mg/S electrode design.

17.
Membranes (Basel) ; 11(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34832134

RESUMEN

Two high resolution, 3D imaging techniques were applied to visualize and characterize sterilizing grade dual-layer filtration of liposomes, enabling membrane structure to be related with function and performance. Two polyethersulfone membranes with nominal retention ratings of 650 nm and 200 nm were used to filter liposomes of an average diameter of 143 nm and a polydispersity index of 0.1. Operating conditions including differential pressure were evaluated. X-ray computed tomography at a pixel size of 63 nm was capable of resolving the internal geometry of each membrane. The respective asymmetry and symmetry of the upstream and downstream membranes could be measured, with pore network modeling used to identify pore sizes as a function of distance through the imaged volume. Reconstructed 3D digital datasets were the basis of tortuous flow simulation through each porous structure. Confocal microscopy visualized liposome retention within each membrane using fluorescent dyes, with bacterial challenges also performed. It was found that increasing pressure drop from 0.07 MPa to 0.21 MPa resulted in differing fluorescent retention profiles in the upstream membrane. These results highlighted the capability for complementary imaging approaches to deepen understanding of liposome sterilizing grade filtration.

18.
ACS Nano ; 15(9): 15342-15353, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34491713

RESUMEN

Three-dimensional (3D) printing is gaining importance as a sustainable route for the fabrication of high-performance energy storage devices. It enables the streamlined manufacture of devices with programmable geometry at different length scales down to micron-sized dimensions. Miniaturized energy storage devices are fundamental components for on-chip technologies to enable energy autonomy. In this work, we demonstrate 3D printed microsupercapacitor electrodes from aqueous inks of pristine graphene without the need of high temperature processing and functional additives. With an intrinsic electrical conductivity of ∼1370 S m-1 and rationally designed architectures, the symmetric microsupercapacitors exhibit an exceptional areal capacitance of 1.57 F cm-2 at 2 mA cm-2 which is retained over 72% after repeated voltage holding tests. The areal power density (0.968 mW cm-2) and areal energy density (51.2 µWh cm-2) outperform the ones of previously reported carbon-based supercapacitors which have been either 3D or inkjet printed. Moreover, a current collector-free interdigitated microsupercapacitor combined with a gel electrolyte provides electrochemical performance approaching the one of devices with liquid-like ion transport properties. Our studies provide a sustainable and low-cost approach to fabricate efficient energy storage devices with programmable geometry.

19.
Neuron ; 109(7): 1188-1201.e7, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577748

RESUMEN

Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of proprioception in the adult zebrafish spinal cord, which is embedded by intraspinal mechanosensory neurons expressing Piezo2 channels. These cells are late-born, inhibitory, commissural neurons with unique molecular and physiological profiles reflecting a dual sensory and motor function. The central proprioceptive organ locally detects lateral body movements during locomotion and provides direct inhibitory feedback onto rhythm-generating interneurons responsible for the central motor program. This dynamically aligns central pattern generation with movement outcome for efficient locomotion. Our results demonstrate that a central proprioceptive organ monitors self-movement using hybrid neurons that merge sensory and motor entities into a unified network.


Asunto(s)
Retroalimentación Sensorial/fisiología , Movimiento/fisiología , Propiocepción/fisiología , Pez Cebra/fisiología , Animales , Generadores de Patrones Centrales/fisiología , Femenino , Interneuronas/fisiología , Canales Iónicos/fisiología , Locomoción/fisiología , Masculino , Mecanotransducción Celular , Neuronas Motoras/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , ARN/genética , Células Receptoras Sensoriales/fisiología , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiología , Tomografía Computarizada por Rayos X , Proteínas de Pez Cebra/fisiología
20.
Nat Commun ; 11(1): 6241, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288760

RESUMEN

Imaging compound action potentials (CAPs) in peripheral nerves could help avoid side effects in neuromodulation by selective stimulation of identified fascicles. Existing methods have low resolution, limited imaging depth, or are invasive. Fast neural electrical impedance tomography (EIT) allows fascicular CAP imaging with a resolution of <200 µm, <1 ms using a non-penetrating flexible nerve cuff electrode array. Here, we validate EIT imaging in rat sciatic nerve by comparison to micro-computed tomography (microCT) and histology with fluorescent dextran tracers. With EIT, there are reproducible localized changes in tissue impedance in response to stimulation of individual fascicles (tibial, peroneal and sural). The reconstructed EIT images correspond to microCT scans and histology, with significant separation between the fascicles (p < 0.01). The mean fascicle position is identified with an accuracy of 6% of nerve diameter. This suggests fast neural EIT can reliably image the functional fascicular anatomy of the nerves and so aid selective neuromodulation.


Asunto(s)
Potenciales de Acción/fisiología , Impedancia Eléctrica , Nervio Ciático/diagnóstico por imagen , Nervio Ciático/fisiología , Microtomografía por Rayos X/métodos , Animales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...