Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37919242

RESUMEN

Size-dependent two-dimensional (2D) materials (e.g., graphene) have been recently used to improve their performance in various applications such as membrane filtration, energy storage, and electrocatalysts. It has also been demonstrated that 2D nanosheets can be one of the promising support materials for decorating nanoparticles (NPs). However, the optimum nanosheet size (lateral length and thickness) for supporting NPs has not yet been explored to enhance their catalytic performance. Herein, we elucidate the mechanism behind size-dependent graphene (GP) as a support due to which gold nanoparticles (AuNPs) are used as an active catalyst for the hydrogen evolution reaction (HER). Surprisingly, the decoration of AuNPs increased with the increasing nanosheet size, counter to what is widely reported in the literature (high surface area for smaller nanosheet size). We found that a large graphene nanosheet (lGP; ∼800 nm) used as the AuNP support (lGP/AuNPs) exhibited superior performance for the HER with long-term stability. The lGP/AuNPs with a suitable content of AuNPs provides a low overpotential and a small Tafel slope, being lower than that of other reported carbon-based HER electrocatalysts. This results from highly exposed active sites of well-dispersed AuNPs on lGP giving high conductivity. The laminar structure of the stacked graphene nanosheets and the high wettability of the lGP/AuNPs electrode surface also play crucial roles in enhancing electrolytes for penetration in the electrode, suggesting a highly electrochemical surface area. Moreover, machine learning (Random Forest) was also used to reveal the essential features of the advanced catalytic material design for catalyst-based applications.

2.
J Chem Inf Model ; 63(16): 5077-5088, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635637

RESUMEN

Graphene-based supercapacitors have emerged as a promising candidate for energy storage due to their superior capacitive properties. Heteroatom-doping is a method of improving the capacitive properties of graphene-based electrodes, but the optimal doping conditions and electrochemical properties are not yet fully understood due to the synergistic effects that occur. Many parameters, such as doping content, defects, specific surface area (SA), electrolyte, and more, could affect the capacitance (CAP). In this study, we use machine learning to solve these critical issues. We applied many models, such as Light Gradient Boost Machine, Extreme Gradient Boost, Polynomial Regression, Neural Network, Elastic Net, Lasso Regression, Ridge Regression, Random Forest, Support Vector Machine, K-Nearest Neighbors, Gradient Boost, AdaBoost, and Decision Tree, to find a suitable model for CAP prediction. Moreover, we enhance the prediction result by taking advantage of the top candidate model and creating a stacking concept (called "stacking models"). The SHAP value was used to identify the range of properties that affect CAP, and it was discussed in detail. Our results suggest that high-CAP graphene supercapacitors should have a large SA, with 4-5% nitrogen, 10-15% oxygen, high percentages of sulfur, a defect ratio close to 1, with acid electrolyte, and a low current density. These findings, along with the developed model and code, are expected to serve as a valuable computational tool for future electrochemical research from fundamental to applications.


Asunto(s)
Grafito , Análisis por Conglomerados , Capacidad Eléctrica , Aprendizaje Automático , Redes Neurales de la Computación
3.
RSC Adv ; 13(35): 24432-24444, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37593665

RESUMEN

This study investigates the use of a hierarchical porous carbon electrode derived from oil palm leaves in a "water-in-salt" supercapacitor. The impact of anion identity on the electrical performance of the carbon electrode was also explored. The results show that the prepared carbon had a hierarchical porous structure with a high surface area of up to 1840 m2 g-1. When a 20 m LiTFSI electrolyte was used, the carbon electrode had a specific capacitance of 176 F g-1 with a wider potential window of about 2.6 V, whereas the use of a cheaper 20 m LiCl electrolyte showed a higher specific capacitance of 331 F g-1 due to the smaller size of the Cl- anion, which enabled inner capacitance. Therefore, the anion identity has an effect on the electrochemical performance of porous carbon, and this research contributes to the understanding of using "water-in-salt" electrolytes in carbon-based supercapacitors. The study's findings provide insights into developing low-cost, high-performance supercapacitors that can operate in a wider voltage range.

4.
Inorg Chem ; 62(32): 12851-12861, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37526701

RESUMEN

Environmental pollution caused by radionuclides like Cs-137 and Cs-134 has increased global attention toward public health. Electrochemical adsorption has emerged as a feasible, rapid, and scalable method to treat contaminated water sources. However, graphene and its derivatives have limitations in ion adsorption via physisorption, forming a double layer that restricts the electrode's adsorption capacity. To address this, we propose the use of molybdenum disulfide (MoS2) with its extensive intercalation galleries of MoS2 nanosheets for cesium removal via an electrochemical route. Liquid-phase exfoliation with water and N-methyl-2-pyrrolidone (NMP) was then used to produce MoS2 nanosheets in a scalable quantity (high-yield production). The formation of a mixed solvent possessing relatively equivalent surface energy for exfoliation enabled us to achieve a remarkable exfoliation yield of up to ca. 1.26 mg mL-1, which is one of the highest yields reported to date (without a surfactant being added) and to the best of our knowledge. The 35% v/v of water in NMP displayed a maximum yield while maintaining the structure of the as-exfoliated one. Water exceeding over 66.7% v/v led to the formation of MoO3. Moreover, an insight into the cesium ion removal mechanism through the electrochemical route was demonstrated. It is found that the Cs+ removal follows electrochemical intercalation rather than adsorption. This work aids the understanding of cesium intercalation coupled with a mass-scale production method, which should lead to more efficient and cost-effective removal of radionuclides from contaminated water sources, opening new research avenues in materials and environmental science.

5.
Nanoscale ; 15(19): 8716-8729, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37014398

RESUMEN

Graphene oxide (GO) membranes have gained great attention for water purification due to the formation of stacked nanosheets giving nanocapillary channels. Unlike graphene, the interlayer spacing of GO membranes gets readily expanded in aqueous solution due to their high oxygen content, resulting in poor ion rejection. Herein, we prepared ultralow oxygen-containing graphene (∼1 at%) via facile liquid-phase exfoliation which was formed as membrane laminates. The graphene membranes exhibited ultrahigh stability with no observed swelling or deformation of the laminar structure when kept in water, aqueous salt solutions, and various pH solutions for over one week. The membranes with a high degree of tortuous nanocapillary channels can efficiently reject the ions found in seawater as well as various charged dye molecules. This indicates that the graphene membranes exhibited ionic and molecular sieving properties due to the effect of size exclusion obtained from the narrow nanocapillary channel and electrostatic repulsion from negatively charged graphene nanosheets. Moreover, we also demonstrated machine learning to gain insights into the membrane performance, which allowed us to obtain membrane optimization as a model for water purification technology.

6.
Sci Rep ; 11(1): 13082, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158599

RESUMEN

Scalable aqueous-based supercapacitors are ideal as future energy storage technologies due to their great safety, low cost, and environmental friendliness. However, the corrosion of metal current collectors e.g., aluminium (Al) foil in aqueous solutions limits their practical applications. In this work, we demonstrate a low-cost, scalable, and simple method to prepare an anti-corrosion current collector using a concept of hydrophobicity by coating the hydrophobic graphite passivation layer on the Al foil via a roll-to-roll coating technology at the semi-automation scale of production pilot plant of 18,650 cylindrical supercapacitor cells. All qualities of materials, electrodes, and production process are therefore in the quality control as the same level of commercial supercapacitors. In addition, the effects of the graphite coating layer have been fundamentally evaluated. We have found that the graphite-coated layer can improve the interfacial contact without air void space between the activated carbon active material layer and the Al foil current collector. Importantly, it can suppress the corrosion and the formation of resistive oxide film resulting in better rate capability and excellent cycling stability without capacitance loss after long cycling. The scalable supercapacitor prototypes here in this work may pave the way to practical 18,650 supercapacitors for sustainable energy storage systems in the future.

7.
Nat Commun ; 12(1): 3092, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035239

RESUMEN

Membrane-based applications such as osmotic power generation, desalination and molecular separation would benefit from decreasing water friction in nanoscale channels. However, mechanisms that allow fast water flows are not fully understood yet. Here we report angstrom-scale capillaries made from atomically flat crystals and study the effect of confining walls' material on water friction. A massive difference is observed between channels made from isostructural graphite and hexagonal boron nitride, which is attributed to different electrostatic and chemical interactions at the solid-liquid interface. Using precision microgravimetry and ion streaming measurements, we evaluate the slip length, a measure of water friction, and investigate its possible links with electrical conductivity, wettability, surface charge and polarity of the confining walls. We also show that water friction can be controlled using hybrid capillaries with different slip lengths at opposing walls. The reported advances extend nanofluidics' toolkit for designing smart membranes and mimicking manifold machinery of biological channels.

8.
Phys Chem Chem Phys ; 23(20): 11616-11623, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33972979

RESUMEN

Recently, graphene-based materials have become ubiquitous in electrochemical devices including electrochemical sensors, electrocatalysts, capacitive and membrane desalination and energy storage devices. However, many of the electrochemical properties of graphene (particularly the capacitance and ionic transport) are not yet fully understood. This paper explores the capacitance and ionic transport properties of size dependent graphene (from 100 nm to 1 µm) prepared through the liquid phase exfoliation of graphite in which the size of graphene was finely selected using a multi-step centrifugation technique. Our experiment was then expanded to include basal plane graphene using highly ordered pyrolytic graphite as a model electrode, describing the assumed theoretical graphene capacitance (quoted as 550 F g-1 or 21 µF cm-2) and the electrochemical surface area of the carbon-based materials. This work improves our understanding of graphene electrochemistry (capacitance and ion transport), which should lead to the continuing development of many high-performance electrochemical devices, especially supercapacitors, capacitive desalination and ion-based selective membranes.

9.
Nanoscale Adv ; 3(3): 653-660, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36133846

RESUMEN

A new approach using graphene as a conductive binder in electrical supercapacitors has recently been proposed. Graphene shows outstanding properties as a conductive binder, and can be used to replace conductive, additive, and polymer binders. However, graphene follows an EDLC behaviour, which may limit its electrochemical performance. In the process described in this work, we introduced WSe2 nanoflakes as a new approach to using pseudocapacitive materials as binders. The WSe2 nanoflakes were produced through liquid phase exfoliation of bulk WSe2, and the flake size was finely selected using a controlled centrifugation speed. The physical and electrochemical properties of the exfoliated WSe2 flakes were analysed; it was found that the smallest flakes (an average flake size of 106 nm) showed outstanding electrochemical properties, expanding our understanding of transition metal dichalcogenide (TMD) materials, and we were able to demonstrate the applicability of using WSe2 as a binder in supercapacitor electrodes. We also successfully replaced conductive additives and polymer binders with WSe2. The overall performance was improved: capacitance was enhanced by 35%, charge transfer resistance reduced by 73%, and self-discharge potential improved by 9%. This study provides an alternative application of using TMD materials as pseudo capacitive binders, which should lead to the continued development of energy storage technology.

10.
Chem Sci ; 11(27): 6978-6989, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34122994

RESUMEN

A new approach to expand the accessible voltage window of electrochemical energy storage systems, based on so-called "water-in-salt" electrolytes, has been expounded recently. Although studies of transport in concentrated electrolytes date back over several decades, the recent demonstration that concentrated aqueous electrolyte systems can be used in the lithium ion battery context has rekindled interest in the electrochemical properties of highly concentrated aqueous electrolytes. The original aqueous lithium ion battery conception was based on the use of concentrated solutions of lithium bis(trifluoromethanesulfonyl)imide, although these electrolytes still possess some drawbacks including cost, toxicity, and safety. In this work we describe the electrochemical behavior of a simple 1 : 1 electrolyte based on highly concentrated aqueous solutions of potassium fluoride (KF). Highly ordered pyrolytic graphite (HOPG) is used as well-defined model carbon to study the electrochemical properties of the electrolyte, as well as its basal plane capacitance, from a microscopic perspective: the KF electrolyte exhibits an unusually wide potential window (up to 2.6 V). The faradaic response on HOPG is also reported using K3Fe(CN)6 as a model redox probe: the highly concentrated electrolyte provides good electrochemical reversibility and protects the HOPG surface from adsorption of contaminants. Moreover, this electrolyte was applied to symmetrical supercapacitors (using graphene and activated carbon as active materials) in order to quantify its performance in energy storage applications. It is found that the activated carbon and graphene supercapacitors demonstrate high gravimetric capacitance (221 F g-1 for activated carbon, and 56 F g-1 for graphene), a stable working voltage window of 2.0 V, which is significantly higher than the usual range of water-based capacitors, and excellent stability over 10 000 cycles. These results provide fundamental insight into the wider applicability of highly concentrated electrolytes, which should enable their application in future of energy storage technologies.

11.
J Phys Chem Lett ; 10(3): 617-623, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30672302

RESUMEN

Carbon materials are ubiquitous in energy storage; however, many of the fundamental electrochemical properties of carbons are still not fully understood. In this work, we studied the capacitance of highly ordered pyrolytic graphite (HOPG), with the aim of investigating specific ion effects seen in the capacitance of the basal plane and edge-oriented planes of the material. A series of alkali metal cations, from Li+, Na+, K+, Rb+, and Cs+ with chloride as the counterion, were used at a fixed electrolyte concentration. The basal plane capacitance at a fixed potential relative to the potential of zero charge was found to increase from 4.72 to 9.39 µF cm-2 proceeding down Group 1. In contrast, the edge-orientated samples display capacitance ca. 100 times higher than those of the basal plane, attributed to pseudocapacitance processes associated with the presence of oxygen groups and largely independent of cation identity. This work improves understanding of capacitive properties of carbonaceous materials, leading to their continued development for use in energy storage.

13.
Sci Rep ; 7(1): 1124, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28442728

RESUMEN

Although Nickel-Cadmium (NiCd) and Nickel-metal hydride (NiMH) batteries have been widely used, their drawbacks including toxic Cd and expensive La alloy at the negative electrodes, low energy density (40-60 Wh/kg for NiCd and 140-300 Wh/L for NiMH), low power density (150 W/kg for NiCd and 1000 W/kg for NiMH), and low working potential (1.2 V) limit their applications. In this work, Cd and La alloy were replaced with N-doped reduced graphene oxide aerogel (N-rGOae) providing a hybrid energy storage (HES) having the battery and supercapacitor effects. The HES of Ni(OH)2-coated N-rGOae//N-rGOae provides 1.5 V, a specific energy of 146 Wh/kg, a maximum specific power of 7705 W/kg, and high capacity retention over 84.6% after 5000 cycles. The mass change at the positive electrode during charging/discharging is 8.5 µg cm-2 owing to the insertion/desertion of solvated OH- into the α-Ni(OH)2-coated N-rGOae. At the negative electrode, the mass change of the solvated K+, physically adsorbed/desorbed to the N-rGOae, is 7.5 µg cm-2. In situ X-ray absorption spectroscopy (XAS) shows highly reversible redox reaction of α-Ni(OH)2. The as-fabricated device without using toxic Cd and expensive La alloy has a potential as a candidate of NiCd and NiMH.

14.
ACS Appl Mater Interfaces ; 8(49): 34045-34053, 2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960410

RESUMEN

The working potential of symmetric supercapacitors is not so wide because one type of material used for the supercapacitor electrodes prefers either positive or negative charge to both charges. To address this problem, a novel asymmetrical supercapacitor (ASC) of battery-type MnCo2O4 nanofibers (NFs)//N-doped reduced graphene oxide aerogel (N-rGOAE) was fabricated in this work. The MnCo2O4 NFs at the positive electrode store the negative charges, i.e., solvated OH-, while the N-rGOAE at the negative electrode stores the positive charges, i.e., solvated K+. An as-fabricated aqueous-based MnCo2O4//N-rGOAE ASC device can provide a wide operating potential of 1.8 V and high energy density and power density at 54 W h kg-1 and 9851 W kg-1, respectively, with 85.2% capacity retention over 3000 cycles. To understand the charge storage reaction mechanism of the MnCo2O4, the synchrotron-based X-ray absorption spectroscopy (XAS) technique was also used to determine the oxidation states of Co and Mn at the MnCo2O4 electrode after being electrochemically tested. The oxidation number of Co is oxidized from +2.76 to +2.85 after charging and reduced back to +2.75 after discharging. On the other hand, the oxidation state of Mn is reduced from +3.62 to +3.44 after charging and oxidized to +3.58 after discharging. Understanding in the oxidation states of Co and Mn at the MnCo2O4 electrode here leads to the awareness of the uncertain charge storage mechanism of the spinel-type oxide materials. High-performance ASC here in this work may be practically used in high-power applications.

15.
Sci Rep ; 6: 37560, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27857225

RESUMEN

Although manganese oxide- and graphene-based supercapacitors have been widely studied, their charge storage mechanisms are not yet fully investigated. In this work, we have studied the charge storage mechanisms of K-birnassite MnO2 nanosheets and N-doped reduced graphene oxide aerogel (N-rGOae) using an in situ X-ray absorption spectroscopy (XAS) and an electrochemical quart crystal microbalance (EQCM). The oxidation number of Mn at the MnO2 electrode is +3.01 at 0 V vs. SCE for the charging process and gets oxidized to +3.12 at +0.8 V vs. SCE and then reduced back to +3.01 at 0 V vs. SCE for the discharging process. The mass change of solvated ions, inserted to the layers of MnO2 during the charging process is 7.4 µg cm-2. Whilst, the mass change of the solvated ions at the N-rGOae electrode is 8.4 µg cm-2. An asymmetric supercapacitor of MnO2//N-rGOae (CR2016) provides a maximum specific capacitance of ca. 467 F g-1 at 1 A g-1, a maximum specific power of 39 kW kg-1 and a specific energy of 40 Wh kg-1 with a wide working potential of 1.6 V and 93.2% capacity retention after 7,500 cycles. The MnO2//N-rGOae supercapacitor may be practically used in high power and energy applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...