Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gels ; 9(4)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37102879

RESUMEN

Using the microwave-assisted sol-gel method, Zn- and Cu-doped TiO2 nanoparticles with an anatase crystalline structure were prepared. Titanium (IV) butoxide was used as a TiO2 precursor, with parental alcohol as a solvent and ammonia water as a catalyst. Based on the TG/DTA results, the powders were thermally treated at 500 °C. XRD and XRF revealed the presence of a single-phase anatase and dopants in the thermally treated nanoparticles. The surface of the nanoparticles and the oxidation states of the elements were studied using XPS, which confirmed the presence of Ti, O, Zn, and Cu. The photocatalytic activity of the doped TiO2 nanopowders was tested for the degradation of methyl-orange (MO) dye. The results indicate that Cu doping increases the photoactivity of TiO2 in the visible-light range by narrowing the band-gap energy.

2.
Materials (Basel) ; 15(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36079515

RESUMEN

The use of Fe films as multi-element targets in space radiation experiments with high-intensity ultrashort laser pulses requires a surface structure that can enhance the laser energy absorption on target, as well as a low concentration and uniform distribution of light element contaminants within the films. In this paper, (110) preferred orientation nanocrystalline Fe thin films with controlled morphology and composition were grown on (100)-oriented Si substrates by oblique angle RF magnetron sputtering, at room temperature. The evolution of films key-parameters, crucial for space-like radiation experiments with organic material, such as nanostructure, morphology, topography, and elemental composition with varying RF source power, deposition pressure, and target to substrate distance is thoroughly discussed. A selection of complementary techniques was used in order to better understand this interdependence, namely X-ray Diffraction, Atomic Force Microscopy, Scanning and Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy and Non-Rutherford Backscattering Spectroscopy. The films featured a nanocrystalline, tilted nanocolumn structure, with crystallite size in the (110)-growth direction in the 15-25 nm range, average island size in the 20-50 nm range, and the degree of polycrystallinity determined mainly by the shortest target-to-substrate distance (10 cm) and highest deposition pressure (10-2 mbar Ar). Oxygen concentration (as impurity) into the bulk of the films as low as 1 at. %, with uniform depth distribution, was achieved for the lowest deposition pressures of (1-3) × 10-3 mbar Ar, combined with highest used values for the RF source power of 125-150 W. The results show that the growth process of the Fe thin film is strongly dependent mainly on the deposition pressure, with the film morphology influenced by nucleation and growth kinetics. Due to better control of film topography and uniform distribution of oxygen, such films can be successfully used as free-standing targets for high repetition rate experiments with high power lasers to produce Fe ion beams with a broad energy spectrum.

3.
Nanomaterials (Basel) ; 9(12)2019 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771204

RESUMEN

Single-phase Ce3+-doped BaTiO3 powders described by the nominal formula Ba1-xCexTi1-x/4O3 with x = 0.005 and 0.05 were synthesized by the acetate variant of the sol-gel method. The structural parameters, particle size, and morphology are strongly dependent on the Ce3+ content. From these powders, dense ceramics were prepared by conventional sintering at 1300 °C for 2 h, as well as by spark plasma sintering at 1050 °C for 2 min. For the conventionally sintered ceramics, the XRD data and the dielectric and hysteresis measurements reveal that at room temperature, the specimen with low cerium content (x = 0.005) was in the ferroelectric state, while the samples with significantly higher Ce3+ concentration (x = 0.05) were found to be in the proximity of the ferroelectric-paraelectric phase transition. The sample with low solute content after spark plasma sintering exhibited insulating behavior, with significantly higher values of relative permittivity and dielectric losses over the entire investigated temperature range relative to the conventionally sintered sample of similar composition. The spark-plasma-sintered Ce-BaTiO3 specimen with high solute content (x = 0.05) showed a fine-grained microstructure and an almost temperature-independent colossal dielectric constant which originated from very high interfacial polarization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA