Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; : e202400139, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752332

RESUMEN

Protein arginine methyltransferase (PRMT) 4 (also known as coactivator-associated arginine methyltransferase 1; CARM1) is involved in a variety of biological processes and is considered as an emerging target class in oncology and other diseases. A successful strategy to identify PRMT substrate-competitive inhibitors has been to exploit chemical scaffolds able to mimic the arginine substrate. (S)-Alanine amide moiety is a valuable arginine mimic for the development of potent and selective PRMT4 inhibitors; however, its high hydrophilicity led to derivatives with poor cellular outcomes. Here, we describe the development of PRMT4 inhibitors featuring a central pyrrole core and an alanine amide moiety. Rounds of optimization, aimed to increase lipophilicity and simultaneously preserve the inhibitory activity, produced derivatives that, despite good potency and physicochemical properties, did not achieve on-target effects in cells. On the other hand, masking the amino group with a NAD(P)H:quinone oxidoreductase 1 (NQO1)-responsive trigger group, led to prodrugs able to reduce arginine dimethylation of the PRMT4 substrates BRG1-associated factor 155 (BAF155). These results indicate that prodrug strategies can be successfully applied to alanine-amide containing PRMT4 inhibitors and provide an option to enable such compounds to achieve sufficiently high exposures in vivo.

2.
Nature ; 626(7997): 92-97, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297174

RESUMEN

Alkenes are indispensable feedstocks in chemistry. Functionalization at both carbons of the alkene-1,2-difunctionalization-is part of chemistry curricula worldwide1. Although difunctionalization at distal positions has been reported2-4, it typically relies on designer substrates featuring directing groups and/or stabilizing features, all of which determine the ultimate site of bond formation5-7. Here we introduce a method for the direct 1,3-difunctionalization of alkenes, based on a concept termed 'charge relocation', which enables stereodivergent access to 1,3-difunctionalized products of either syn- or anti-configuration from unactivated alkenes, without the need for directing groups or stabilizing features. The usefulness of the approach is demonstrated in the synthesis of the pulmonary toxin 4-ipomeanol and its derivatives.

3.
J Med Chem ; 66(19): 13665-13683, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37560786

RESUMEN

Less studied than the other protein arginine methyltransferase isoforms, PRMT7 and PRMT9 have recently been identified as important therapeutic targets. Yet, most of their biological roles and functions are still to be defined, as well as the structural requirements that could drive the identification of selective modulators of their activity. We recently described the structural requirements that led to the identification of potent and selective PRMT4 inhibitors spanning both the substrate and the cosubstrate pockets. The reanalysis of the data suggested a PRMT7 preferential binding for shorter derivatives and prompted us to extend these structural studies to PRMT9. Here, we report the identification of the first potent PRMT7/9 inhibitor and its binding mode to the two PRMT enzymes. Label-free quantification mass spectrometry confirmed significant inhibition of PRMT activity in cells. We also report the setup of an effective AlphaLISA assay to screen small molecule inhibitors of PRMT9.


Asunto(s)
Proteína-Arginina N-Metiltransferasas , Arginina/química , Metilación , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores
4.
J Med Chem ; 65(17): 11574-11606, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35482954

RESUMEN

Protein arginine methyltransferases (PRMTs) are important therapeutic targets, playing a crucial role in the regulation of many cellular processes and being linked to many diseases. Yet, there is still much to be understood regarding their functions and the biological pathways in which they are involved, as well as on the structural requirements that could drive the development of selective modulators of PRMT activity. Here we report a deconstruction-reconstruction approach that, starting from a series of type I PRMT inhibitors previously identified by us, allowed for the identification of potent and selective inhibitors of PRMT4, which regardless of the low cell permeability show an evident reduction of arginine methylation levels in MCF7 cells and a marked reduction of proliferation. We also report crystal structures with various PRMTs supporting the observed specificity and selectivity.


Asunto(s)
Arginina , Proteína-Arginina N-Metiltransferasas , Arginina/metabolismo , Inhibidores Enzimáticos/química , Metilación , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...