Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 253(Pt 6): 127406, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37832612

RESUMEN

This work proposes the use of supercritical CO2 to impregnate starch (potato and corn) aerogels with quercetin for a potential fungistatic application. Starch aerogels were successfully produced with supercritical drying, but different results were found depending on the amylose/amylopectin ratio. A higher amount of amylose increases aerogels' specific surface area (with a structure with nanofibrils and nodes) due to the linear and amorphous character of this polymer, whereas a higher amount of amylopectin decreases this property until values of only 25 m2·g-1, obtaining an aerogel with a rough surface. These results were explained with XRD, thermogravimetric, and rheological results (triple step with two temperature sweeps and a time sweep and steady state analysis) concerning hydrogel formation. In fact, retrogradation step plays a more important role in hydrogel formation for a starch source with a higher amount of amylopectin due to an increase in the different polymers' interactions. Supercritical impregnation of quercetin on the aerogels was successfully performed (a loading around 0.30 % with respect to the amount of polymer), and in vitro results indicated that the aerogels produced a fungistatic effect on different types of fungi, but only in the first 12 h because the microorganisms adapted to the surrounding environment. Finally, a compartmental model was used to fit the drug release, which is controlled by quercetin aqueous solubility, indicating the main mass transfer resistances (mass transfer through aerogels was always around 500 min-1 and dissolution process mass transfer from 5·10-3 to 1.65·10-3 s-1) and how an increase in the specific surface area of the aerogels (in the case of corn aerogel) provided a stronger initial burst (70-80 % in 20 min). In fact, this initial burst release was mathematically related to a parameter, that varies from 0.178 to 0.036 depending on the aerogel composition. This study shows that starch aerogels can be impregnated with a hydrophobic compound with fungistatic effect by using supercritical CO2, modifying in addition the drug release by changing the native starch.


Asunto(s)
Portadores de Fármacos , Almidón , Almidón/química , Portadores de Fármacos/química , Amilosa , Quercetina , Amilopectina , Modelos Epidemiológicos , Dióxido de Carbono , Hidrogeles
2.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298221

RESUMEN

Fibrous membranes of thermoplastic polyurethane (TPU) were fabricated through a uni-axial electrospinning process. Fibers were then separately charged with two pharmacological agents, mesoglycan (MSG) and lactoferrin (LF), by supercritical CO2 impregnation. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) analysis proved the formation of a micrometric structure with a homogeneous distribution of mesoglycan and lactoferrin. Besides, the degree of retention is calculated in four liquid media with different pHs. At the same time, angle contact analysis proved the formation of a hydrophobic membrane loaded with MSG and a hydrophilic LF-loaded one. The impregnation kinetics demonstrated a maximum loaded amount equal to 0.18 ± 0.20% and 0.07 ± 0.05% for MSG and LT, respectively. In vitro tests were performed using a Franz diffusion cell to simulate the contact with the human skin. The release of MSG reaches a plateau after about 28 h while LF release leveled off after 15 h. The in vitro compatibility of electrospun membranes has been evaluated on HaCaT and BJ cell lines, as human keratinocytes and fibroblasts, respectively. The reported data proved the potential application of fabricated membranes for wound healing.


Asunto(s)
Nanofibras , Poliuretanos , Humanos , Poliuretanos/química , Lactoferrina , Cicatrización de Heridas , Piel , Nanofibras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...