Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS One ; 18(4): e0283258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37053238

RESUMEN

While Misiones, Argentina contains one of the largest remnants of Upper Paraná Atlantic Forest ecoregion, one of the world's biodiversity hotspots, only ~50% of this native forest is protected. Each protected area is at risk of becoming an island of native forest surrounded by a matrix of altered habitats due to ongoing land conversion. In an effort to maximize long-term connectivity between existing protected areas, DeMatteo [1] used a multifaceted cost analysis to determine the optimal location for the region's first multispecies corridor using noninvasive data on jaguars (Panthera onca), pumas (Puma concolor), ocelots (Leopardus pardalis), southern tiger cats (Leopardus guttulus), and bush dogs (Speothos venaticus). This work builds on this framework by integrating new field data that broadens the scope of species-specific data across the region's heterogeneous landscape, which varies in vegetation, disturbance, human proximity, and protective status. In addition, two different land use layers are compared across the distributions of the five carnivores, the overlap in their independent distributions, and their relationship to the multispecies corridor. Interpretation of these land use data to species-specific habitat suitability goes beyond DeMatteo [1], with a subdivision of suitability into marginal and optimal areas. This refined scale allows a reanalysis of key areas in the multispecies corridor, where connectivity was previously defined as at highly-at-risk, allowing for a more directed development of management strategies. These analyses and their interpretation extend beyond northern-central Misiones, as the threats are not unique to this region. The need to develop management strategies that balance human-wildlife needs will continue to grow as humans expand their footprint. The techniques applied in this analysis provide a way to identify key areas that require specific management strategies, either through restoration, protection, or a combination of both.


Asunto(s)
Canidae , Carnívoros , Marsupiales , Panthera , Puma , Animales , Humanos , Ecosistema , Bosques , Conservación de los Recursos Naturales/métodos
2.
Viruses ; 13(3)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807908

RESUMEN

We evaluated a lyophilized CRISPR-Cas12 assay for SARS-CoV-2 detection (Lyo-CRISPR SARS-CoV-2 kit) based on reverse transcription, isothermal amplification, and CRISPR-Cas12 reaction. From a total of 210 RNA samples extracted from nasopharyngeal swabs using spin columns, the Lyo-CRISPR SARS-CoV-2 kit detected 105/105 (100%; 95% confidence interval (CI): 96.55-100) positive samples and 104/105 (99.05%; 95% CI: 94.81-99.97) negative samples that were previously tested using commercial RT-qPCR. The estimated overall Kappa index was 0.991, reflecting an almost perfect concordance level between the two diagnostic tests. An initial validation test was also performed on 30 nasopharyngeal samples collected in lysis buffer, in which the Lyo-CRISPR SARS-CoV-2 kit detected 20/21 (95.24%; 95% CI: 76.18-99.88) positive samples and 9/9 (100%; 95% CI: 66.37-100) negative samples. The estimated Kappa index was 0.923, indicating a strong concordance between the test procedures. The Lyo-CRISPR SARS-CoV-2 kit was suitable for detecting a wide range of RT-qPCR-positive samples (cycle threshold range: 11.45-36.90) and dilutions of heat-inactivated virus (range: 2.5-100 copies/µL); no cross-reaction was observed with the other respiratory pathogens tested. We demonstrated that the performance of the Lyo-CRISPR SARS-CoV-2 kit was similar to that of commercial RT-qPCR, as the former was highly sensitive and specific, timesaving (1.5 h), inexpensive, and did not require sophisticated equipment. The use of this kit would reduce the time taken for diagnosis and facilitate molecular diagnosis in low-resource laboratories.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Técnicas de Diagnóstico Molecular , Nasofaringe/virología , ARN Viral/genética , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad
3.
Rev. Hosp. Ital. B. Aires (2004) ; 41(1): 37-42, mar. 2021. ilus, tab
Artículo en Español | LILACS | ID: biblio-1178964

RESUMEN

El término CRISPR, por su acrónimo en inglés refiere a Clustered Regularly Interspaced Short Palindromic Repeats, es decir, repeticiones palindrómicas cortas, agrupadas y regularmente esparcidas, por sus características en el genoma, pertenece naturalmente al sistema de defensa de bacterias y arqueas. Este ha sido adaptado biotecnológicamente para la edición del ADN de células eucariotas, incluso de células humanas. El sistema CRISPR-Cas para editar genes consta, en forma generalizada, de dos componentes: una proteína nucleasa (Cas) y un ARN guía (sgRNA). La simplicidad del complejo lo hace una herramienta molecular reprogramable capaz de ser dirigida y de editar cualquier sitio en un genoma conocido. Su principal foco son las terapias para enfermedades hereditarias monogénicas y para el cáncer. Sin embargo, además de editor de genes, la tecnología CRISPR se utiliza para edición epigenética, regulación de la expresión génica y método de diagnóstico molecular. Este artículo tiene por objetivo presentar una revisión de las aplicaciones de la herramienta molecular CRISPR-Cas, particularmente en el campo biomédico, posibles tratamientos y diagnósticos, y los avances en investigación clínica, utilizando terapia génica con CRISPR/Cas más relevantes hasta la fecha. (AU)


CRISPR are Clustered Regularly Interspaced Short Palindromic Repeats, which naturally belong to the defense system of bacteria and archaea. It has been biotechnologically adapted for editing the DNA of eukaryotic cells, including human cells. The CRISPR-Cas system for editing genes generally consists of two components, a nuclease protein (Cas) and a guide RNA (sgRNA). The simplicity of the complex makes it a reprogrammable molecular tool capable of being targeted and editing any site in a known genome. Its main focus is therapies for monogenic inherited diseases and cancer. However, in addition to gene editor, CRISPR technology is used for epigenetic editing, regulation of gene expression, and molecular diagnostic methods. This article aims to present a review of the applications of the CRISPR-Cas molecular tool, particularly in the biomedical field, possible treatments and diagnoses, and the advances in clinical research, using the most relevant CRISPR-Cas gene therapy to date. (AU)


Asunto(s)
Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , Biotecnología , Terapia Genética/métodos , Expresión Génica , Genoma Humano/genética , Regulación de la Expresión Génica , Epigenómica/tendencias , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/uso terapéutico , Enfermedades Genéticas Congénitas/terapia , Neoplasias/terapia
4.
Emerg Microbes Infect ; 9(1): 1140-1148, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32486913

RESUMEN

CRISPR-Cas12a (also called Cpf1) has been commonly used for genomic editing, based on its ability to generate precise double-stranded DNA (dsDNA) breaks. Recently, it was demonstrated that Cas12a exhibits unspecific ssDNAse activity upon target recognition. This feature allows CRISPR-Cas to be coupled with a ssDNA reporter and generate a fast, accurate and ultrasensitive molecular detection method. Here, we demonstrate that Cas12a was able to detect DNA target sequences corresponding to carbapenemases resistance genes such as KPC, NDM and OXA. Also, with the addition of a reverse-transcription step, we were able to detect viral RNA sequences from DENV, ZIKV and HANTV genomes. In all cases, assay run time was less than two hours. Additionally, we report attomolar levels of detection. This methodology was validated using clinical samples from patients infected with Dengue virus. Reactions were visualized by detection of a fluorescent signal, as well as by the use of a simple lateral flow strip. These results indicate that Cas12a is able to detect both DNA and RNA targets, making it an appropriate and convenient tool to detect all types of pathogens.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Farmacorresistencia Bacteriana/genética , Endodesoxirribonucleasas/genética , Edición Génica/métodos , Virus ARN/genética , beta-Lactamasas/farmacología , ADN de Cadena Simple/genética , Dengue/virología , Virus del Dengue/genética , Colorantes Fluorescentes , Virus Hantaan/genética , Humanos , Técnicas de Diagnóstico Molecular , Virus ARN/patogenicidad , ARN Viral/genética , Virus Zika/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...