Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(13): e33636, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071605

RESUMEN

Numerous side effects of breast cancer drugs have prompted researchers to explore more into new therapeutic approaches derived from natural substances. In this context, our study focused on uncovering the potential of East Kalimantan propolis from Trigona apicalis for breast cancer treatment including the underlying mechanisms through bioinformatics approached. We conducted integrated in vitro and bioinformatics analysis of network pharmacology, molecular docking, molecular dynamics and MM-GBSA analysis. Initially, in vitro cytotoxic assay demonstrated the anti-breast cancer activity potential of ethanol extract of East Kalimantan propolis, particularly its ethyl acetate fraction, which exhibited similar activity to doxorubicin, as indicated by their IC50 value. This study revealed eight propolis compounds, consisting of flavonoids and phenolic acids, in East Kalimantan propolis. By integrating microarray datasets (GSE29431, GSE36295, and GSE42568) analysis with potential targets derived from propolis compounds, 39 shared target genes were identified. Subsequently, GO and KEGG pathway, protein-protein interaction (PPI) network, core hub genes and gene expression analysis revealed three major targets, namely, PTGS2, CXCL2, and MMP9. Among them, only MMP9 was highly expressed in breast cancer than normal. Moreover, molecular docking revealed the six of propolis compounds which exhibited pronounced binding affinity towards MMP-9, better than marimastat as control drug. Dynamic simulation confirmed the stability of chrysin and quercetin as best compounds. Additionally, MM-GBSA analysis revealed a relative binding energy for chrysin (-25.6403 kcal/mol) that was comparable to marimastat (-27.3827 kcal/mol). In conclusion, this study reveals how East Kalimantan Propolis affect breast cancer and emphasizes MMP9 as a key target for future therapeutics.

2.
Chem Biodivers ; 21(6): e202400433, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38584139

RESUMEN

This study aims to identify the phytochemical profile of Apis mellifera propolis and explore the potential of its anti-diabetic activity through inhibition of α-amylase (α-AE), α-glucosidase(α-GE), as well as novel antidiabetic compounds of propolis. Apis mellifera propolis extract (AMPE) exhibited elevated polyphenol 33.26±0.17 (mg GAE/g) and flavonoid (15.45±0.13 mg RE/g). It also indicated moderate strong antioxidant activity (IC50 793.09±1.94 µg/ml). This study found that AMPE displayed promising α-AE and α-GE inhibition through in vitro study. Based on LC-MS/MS screening, 18 unique AMPE compounds were identified, with majorly belonging to anthraquinone and flavonoid compounds. Furthermore, in silico study determined that 8 compounds of AMPE exhibited strong binding to α-AE that specifically interacted with its catalytic residue of ASP197. Moreover, 2 compounds exhibit potential inhibition of α-GE, by interacting with crucial amino acids of ARG315, ASP352, and ASP69. Finally, we suggested that 2,7-Dihydroxy-1-(p-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene and 3(3-(3,4-Dihydroxybenzyl)-7-hydroxychroman-4-one as novel inhibitors of α-AE and α-GE. Notably, these compounds were initially discovered from Apis mellifera propolis in this study. The molecular dynamic analysis confirmed their stable binding with both enzymes over 100 ns simulations. The in vivo acute toxicity assay reveals AMPE as a practically non-toxic product with an LD50 value of 16,050 mg/kg. Therefore, this propolis may serve as a promising natural product for diabetes mellitus treatment.


Asunto(s)
Antioxidantes , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Fitoquímicos , Própolis , alfa-Amilasas , alfa-Glucosidasas , Própolis/química , Própolis/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Abejas , Animales , alfa-Glucosidasas/metabolismo , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Fitoquímicos/química , Fitoquímicos/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación de Dinámica Molecular , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología
3.
ADMET DMPK ; 12(1): 1-26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560717

RESUMEN

Background and purpose: Scientific research is crucial to develop therapies for various disease severity levels, as modern drugs cause side effects and are difficult to predict. Researchers are exploring herbal alternatives with fewer side effects, particularly propolis, which has been validated through in vitro, in vivo, and clinical studies. This will focus on scientific evidence and its supporting technology for developing new bioactive compounds for chronic diseases. Nanotechnology can improve the delivery and absorption of herbal medicines, which often have poor bioavailability due to their high molecular weight and solubility in water, particularly in oral medicines. This technology can enhance propolis's effects through multi-target therapy and reduce side effects. Experimental approach: All publications related to each section of this review were discovered using the search engines Google Scholar, Scopus, and Pubmed. This was only available for publication between 2013 and 2023. The selected publications were used as references in this review after being thoroughly studied. Key results: Evaluation of propolis active compounds, the classification of propolis nano formulations, design concepts, and mechanisms of action of propolis nano formulation. Additionally, the challenges and prospects for how these insights can be translated into clinical benefits are discussed. Conclusion: In the last ten years, a list of nanoformulation propolis has been reported. This review concludes the difficulties encountered in developing large-scale nanoformulations. To commercialize them, improvements in nano carrier synthesis, standardized evaluation methodology within the framework of strategy process improvement, and Good Manufacturing Practices would be required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA