Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(4): e0154129, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27100870

RESUMEN

Abundant miRNAs have been identified in milk and mammary gland tissues of different species. Typically, RNA in milk can be extracted from different fractions including fat, whey and cells and the mRNA transcriptome of milk could serve as an indicator of the transcriptome of mammary gland tissue. However, it has not been adequately validated if the miRNA transcriptome of any milk fraction could be representative of that of mammary gland tissue. The objectives of this study were to (1) characterize the miRNA expression spectra from three milk fractions- fat, whey and cells; (2) compare miRNome profiles of milk fractions (fat, whey and cells) with mammary gland tissue miRNome, and (3) determine which milk fraction miRNome profile could be a better representative of the miRNome profile of mammary gland tissue. Milk from four healthy Canadian Holstein cows in mid lactation was collected and fractionated. Total RNA extracted from each fraction was used for library preparation followed by small RNA sequencing. In addition, miRNA transcripts of mammary gland tissues from twelve Holstein cows in our previous study were used to compare our data. We identified 210, 200 and 249 known miRNAs from milk fat, whey and cells, respectively, with 188 universally expressed in the three fractions. In addition, 33, 31 and 36 novel miRNAs from milk fat, whey and cells were identified, with 28 common in the three fractions. Among 20 most highly expressed miRNAs in each fraction, 14 were expressed in common and 11 were further shared with mammary gland tissue. The three milk fractions demonstrated a clear separation from each other using a hierarchical cluster analysis with milk fat and whey being most closely related. The miRNome correlation between milk fat and mammary gland tissue (rmean = 0.866) was significantly higher than the other two pairs (p < 0.01), whey/mammary gland tissue (rmean = 0.755) and milk cell/mammary gland tissue (rmean = 0.75), suggesting that milk fat could be an alternative non-invasive source of RNA in assessing miRNA activities in bovine mammary gland. Predicted target genes (1802) of 14 highly expressed miRNAs in milk fractions were enriched in fundamental cellular functions, infection, organ and tissue development. Furthermore, some miRNAs were highly enriched (FDR <0.05) in milk whey (3), cells (11) and mammary gland tissue (14) suggesting specific regulatory functions in the various fractions. In conclusion, we have obtained a comprehensive miRNA profile of the different milk fractions using high throughput sequencing. Our comparative analysis showed that miRNAs from milk fat accurately portrayed the miRNome of mammary gland tissue. Functional annotation of the top expressed miRNAs in milk confirmed their critical regulatory roles in mammary gland functions and potentially to milk recipients.


Asunto(s)
Grasas/metabolismo , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Leche/química , Suero Lácteo/metabolismo , Animales , Bovinos , Análisis por Conglomerados , Femenino , Glándulas Mamarias Animales/metabolismo , MicroARNs/análisis , MicroARNs/clasificación , Leche/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN/métodos
2.
Genet Sel Evol ; 36(6): 673-90, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15496287

RESUMEN

Genetic diversity, introgression and relationships were studied in 521 individuals from 9 African Bos indicus and 3 Bos taurus cattle breeds in Cameroon and Nigeria using genotype information on 28 markers (16 microsatellite, 7 milk protein and 5 blood protein markers). The genotypes of 13 of the 16 microsatellite markers studied on three European (German Angus, German Simmental and German Yellow) and two Indian (Nelore and Ongole) breeds were used to assess the relationships between them and the African breeds. Diversity levels at microsatellite loci were higher in the zebu than in the taurine breeds and were generally similar for protein loci in the breeds in each group. Microsatellite allelic distribution displayed groups of alleles specific to the Indian zebu, African taurine and European taurine. The level of the Indian zebu genetic admixture proportions in the African zebus was higher than the African taurine and European taurine admixture proportions, and ranged from 58.1% to 74.0%. The African taurine breed, Muturu was free of Indian zebu genes while its counter Namchi was highly introgressed (30.2%). Phylogenic reconstruction and principal component analysis indicate close relationships among the zebu breeds in Cameroon and Nigeria and a large genetic divergence between the main cattle groups--African taurine, European taurine and Indian zebu, and a central position for the African zebus. The study presents the first comprehensive information on the hybrid composition of the individual cattle breeds of Cameroon and Nigeria and the genetic relationships existing among them and other breeds outside of Africa. Strong evidence supporting separate domestication events for the Bos species is also provided.


Asunto(s)
Alelos , Biomarcadores/análisis , Bovinos/genética , Variación Genética , Genética de Población , Repeticiones de Microsatélite , África , Animales , Proteínas Sanguíneas/análisis , Cruzamiento , Femenino , Frecuencia de los Genes , Masculino , Proteínas de la Leche/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA