Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 182, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604574

RESUMEN

Due to their sessile nature, plants are exposed to various environmental stressors such as exposure to high levels of harmful ultraviolet (UV), ionizing, and non-ionizing radiations. This exposure may result in various damages, ranging from DNA and chromosomal aberrations to phenotypic abnormalities. As an adaptation, plants have evolved efficient DNA repair mechanisms to detect and repair any damage caused by exposure to these harmful stressors to ensure their survival. In this study, the effects of gamma radiation (as a source of ionizing radiation) on clonal Ananas comosus var. MD2 was evaluated. The morphology and physiology of the clonal plantlets before and after exposure to gamma radiation were monitored at specific time intervals. The degree of genetic variation between the samples pre- and post-irradiation was also analyzed by using inter-simple sequence repeat (ISSR) markers. The resulting data revealed that the heights of the irradiated plantlets were significantly reduced (compared to control), but improved with the recovery period. Irradiated samples also exhibited relatively good photosynthetic efficiency that further improved as the plantlets recover. These observations were supported by the ISSR analysis, where the genetic dissimilarities between the irradiated samples and control were reduced by 0.1017, after 4 weeks of recovery. Overall, our findings suggested that the phenotype recovery of the clonal A. comosus var. MD2 plantlets was contributed by their ability to detect and repair the DNA lesions (as exemplified by the reduction in genetic dissimilarity after 4 weeks) and hence allow the plantlets to undergo phenotype reversion to normal plant stature.


Asunto(s)
Ananas , Ananas/genética , Radiación Ionizante , Rayos gamma/efectos adversos , Reparación del ADN/genética , Fenotipo , Plantas
2.
Biology (Basel) ; 11(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35336763

RESUMEN

Human health risk and phytoremediation of potentially toxic metals (PTMs) in the edible vegetables have been widely discussed recently. This study aimed to determine the concentrations of four PTMs, namely Cd, Fe, Ni, and Zn) in Amaranthus viridis (leaves, stems, and roots) collected from 11 sampling sites in Peninsular Malaysia and to assess their human health risk (HHR). In general, the metal levels followed the order: roots > stems > leaves. The metal concentrations (µg/g) in the leaves of A. viridis ranged from 0.45 to 2.18 dry weight (dw) (0.05−0.26 wet weight (ww)), 74.8 to 535 dw (8.97−64.2 ww), 2.02 to 7.45 dw (0.24−0.89 ww), and 65.2 to 521 dw (7.83−62.6 ww), for Cd, Fe, Ni, and Zn, respectively. The positive relationships between the metals, the plant parts, and the geochemical factions of their habitat topsoils indicated the potential of A. viridis as a good biomonitor of Cd, Fe, and Ni pollution. With most of the values of the bioconcentration factor (BCF) > 1.0 and the transfer factor (TF) > 1.0, A. viridis was a very promising phytoextraction agent of Ni and Zn. Additionally, with most of the values of BCF > 1.0 and TF < 1.0, A. viridis was a very promising phytostabiliser of Cd and Fe. With respect to HHR, the target hazard quotients (THQ) for Cd, Fe, Pb, and Zn in the leaves of A. viridis were all below 1.00, indicating there were no non-carcinogenic risks of the four metals to consumers, including children and adults. Nevertheless, routine monitoring of PTMs in Amaranthus farms is much needed.

3.
Artículo en Inglés | MEDLINE | ID: mdl-33924835

RESUMEN

The invasive weed Asystasia gangetica was investigated for its potential as a biomonitor and as a phytoremediator of potentially toxic metals (PTMs) (Cd, Cu, Ni, Pb, and Zn) in Peninsular Malaysia owing to its ecological resistance towards unfavourable environments. The biomonitoring potential of PTMs was determined based on the correlation analysis of the metals in the different parts of the plant (leaves, stems, and roots) and its habitat topsoils. In the roots, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 2.18, 9.22 to 139, 0.63 to 5.47, 2.43 to 10.5, and 50.7 to 300, respectively. In the leaves, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 1.16, 7.94 to 20.2, 0.03 to 6.13, 2.10 to 21.8, and 18.8 to 160, respectively. In the stems, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 1.25, 5.57 to 11.8, 0.23 to 3.69, 0.01 to 7.79, and 26.4 to 246, respectively. On the other hand, the phytoremediation potential of the five metals was estimated based on the bioconcentration factor (BCF) and the translocation factor (TF) values. Correlation analysis revealed that the roots and stems could be used as biomonitors of Cu, the stems as biomonitors of Ni, the roots and leaves as biomonitors of Pb, and all three parts of the plant as biomonitors of Zn. According to the BCF values, in the topsoil, the "easily, freely, leachable, or exchangeable" geochemical fractions of the five metals could be more easily transferred to the roots, leaves, and stems when compared with total concentrations. Based on the TF values of Cd, Ni, and Pb, the metal transfer to the stems (or leaves) from the roots was efficient (>1.0) at most sampling sites. The results of BCF and TF showed that A. gangetica was a good phytoextractor for Cd and Ni, and a good phytostabilizer for Cu, Pb, and Zn. Therefore, A. gangetica is a good candidate as a biomonitor and a phytoremediator of Ni, Pb, and Zn for sustainable contaminant remediation subject to suitable field management strategies.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente , Malasia , Metales Pesados/análisis , Metales Pesados/toxicidad , Malezas , Suelo , Contaminantes del Suelo/análisis
4.
Plants (Basel) ; 10(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806923

RESUMEN

The growing demand for high value aromatic herb Polygonum minus-based products have increased in recent years, for its antioxidant, anticancer, antimicrobial, and anti-inflammatory potentials. Although few reports have indicated the chemical profiles and antioxidative effects of Polygonum minus, no study has been conducted to assess the benefits of micro-environmental manipulation (different shading levels) on the growth, leaf gas exchange and secondary metabolites in Polygonum minus. Therefore, two shading levels (50%:T2 and 70%:T3) and one absolute control (0%:T1) were studied under eight weeks and 16 weeks of exposures on Polygonum minus after two weeks. It was found that P. minus under T2 obtained the highest photosynthesis rate (14.892 µmol CO2 m-2 s-1), followed by T3 = T1. The increase in photosynthesis rate was contributed by the enhancement of the leaf pigments content (chlorophyll a and chlorophyll b). This was shown by the positive significant correlations observed between photosynthesis rate with chlorophyll a (r2 = 0.536; p ≤ 0.05) and chlorophyll b (r2 = 0.540; p ≤ 0.05). As the shading levels and time interval increased, the production of total anthocyanin content (TAC) and antioxidant properties of Ferric Reducing Antioxidant Power (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) also increased. The total phenolic content (TPC) and total flavonoid content (TFC) were also significantly enhanced under T2 and T3. The current study suggested that P.minus induce the production of more leaf pigments and secondary metabolites as their special adaptation mechanism under low light condition. Although the biomass was affected under low light, the purpose of conducting the study to boost the bioactive properties in Polygonum minus has been fulfilled by 50% shading under 16 weeks' exposure.

5.
Sci Rep ; 11(1): 3864, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594103

RESUMEN

Rice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72-92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.


Asunto(s)
Germinación/efectos de los fármacos , Nitratos/farmacología , Oryza/efectos de los fármacos , Compuestos de Potasio/farmacología , Ácido Salicílico/farmacología , Dióxido de Silicio/farmacología , Antioxidantes/metabolismo , Producción de Cultivos/métodos , Sequías , Oryza/enzimología , Oryza/crecimiento & desarrollo , Plantones/crecimiento & desarrollo
6.
Biology (Basel) ; 11(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35053001

RESUMEN

Human activities due to different land uses are being studied widely in many countries. This study aimed to determine the ecological risks and human health risk assessments (HHRA) of Cd, Pb, Ni, Cu, and Zn in the topsoils of six land uses in Peninsular Malaysia. The ranges of the potentially toxic metals (PTMs) in the soils (mg/kg, dry weight) of this study were 0.24-12.43 for Cd (mean: 1.94), 4.66-2363 for Cu (mean: 228), 2576-116,344 for Fe (mean: 32,618), 2.38-75.67 for Ni (mean: 16.04), 7.22-969 for Pb (mean: 115) and 11.03-3820 for Zn (mean: 512). For the ecological risk assessments, the potential ecological risk index (PERI) for single metals indicated that the severity of pollution of the five metals decreased in the following sequence: Cd > Cu > Pb > Zn > Ni. It was found that industry, landfill, rubbish heap, and mining areas were categorized as "very high ecological risk". For HHRA, the land uses of industry, landfill and rubbish heap were found to have higher hazard quotient (HQ) values for the three pathways (with the order: ingestion > dermal contact > inhalation ingestion) of the five metals for children and adults, when compared to the mining, plantation, and residential areas. The values for both the non-carcinogenic (Cd, Cu, Ni, and Zn), and carcinogenic risks (CR) for inhalation (Cd and Ni) obtained for children and adults in this study showed no serious adverse health impacts on their health. However, of public concern, the hazard index (HI), for Pb of children at the landfill (L-3) and the rubbish heap (RH-3) sites exceeded 1.0, indicating non-carcinogenic risk (NCR) for children. Therefore, these PERI and HHRA results provided fundamental data for PTMs pollution mitigation and environmental management in areas of different land uses in Peninsular Malaysia.

7.
Molecules ; 22(10)2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-29023367

RESUMEN

A randomized complete block (RCBD) study was designed to investigate the effects of cadmium (Cd) and copper (Cu) on the growth, bioaccumulation of the two heavy metals, metabolite content and antibacterial activities in Gyanura procumbens (Lour.) Merr. Nine treatments including (1) control (no Cd and Cu); (2) Cd 2 = cadmium 2 mg/L; (3) Cd 4 = cadmium 4 mg/L; (4) Cu 70 = copper 70 mg/L; (5) Cu 140 = copper 140 mg/L); (6) Cd 2 + Cu 70 = cadmium 2 mg/L + copper 70 mg/L); (7) Cd 2 + Cu 140 = cadmium 2 mg/L + copper 70 mg/L); (8) Cd 4 + Cu 70 = cadmium 4 mg/L+ copper 70 mg/L and (9) Cd 4 + Cu 140 = cadmium 4 mg/L + copper 140 mg/L) were evaluated in this experiment. It was found that the growth parameters (plant dry weight, total leaf area and basal diameter) were reduced with the exposure to increased concentrations of Cd and Cu and further decreased under interaction between Cd and Cu. Production of total phenolics, flavonoids and saponin was observed to be reduced under combined Cd and Cu treatment. The reduction in the production of plant secondary metabolites might be due to lower phenyl alanine lyase (PAL) activity under these conditions. Due to that, the 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and antibacterial activities was also found to be reduced by the combined treatments. The current experiments show that the medicinal properties of G. procumbens are reduced by cadmium and copper contamination. The accumulation of heavy metal also was found to be higher than the safety level recommended by the WHO in the single and combined treatments of Cd and Cu. These results indicate that exposure of G. procumbens to Cd and Cu contaminated soil may potentially harm consumers due to bioaccumulation of metals and reduced efficacy of the herbal product.


Asunto(s)
Antioxidantes/metabolismo , Asteraceae/efectos de los fármacos , Asteraceae/fisiología , Cadmio/farmacología , Cobre/farmacología , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/fisiología , Metabolismo Secundario/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Cadmio/toxicidad , Clorofila/química , Cobre/toxicidad , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Metales Pesados/farmacología , Metales Pesados/toxicidad , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química
8.
ScientificWorldJournal ; 2014: 360290, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24683336

RESUMEN

A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 µ mol/mol) and four levels of light intensity (225, 500, 625, and 900 µ mol/m(2)/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 µ mol/mol + light intensity at 225 µ mol/m(2)/s. Meanwhile, at 400 µ mol/mol CO2 + 900 µ mol/m(2)/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 µ mol/mol the photosynthesis, stomatal conductance, f v /f m (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition.


Asunto(s)
Antioxidantes/metabolismo , Dióxido de Carbono/farmacología , Fotosíntesis/fisiología , Primulaceae/fisiología , Metabolismo Secundario/fisiología , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Luz , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Primulaceae/efectos de los fármacos , Primulaceae/efectos de la radiación , Dosis de Radiación , Metabolismo Secundario/efectos de los fármacos , Metabolismo Secundario/efectos de la radiación
9.
Molecules ; 19(2): 1795-819, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24504074

RESUMEN

The use of periodical water stress and potassium fertilization may enhance rice tolerance to drought stress and improve the crop's instantaneous water use efficiency without much yield reduction. This study was conducted to assess the effects of different periodical water stress combined with potassium fertilization regimes on growth, yield, leaf gas exchanges and biochemical changes in rice grown in pots and compare them with standard local rice grower practices. Five treatments including (1) standard local grower's practice (control, 80CF = 80 kg K2O/ha + control flooding); (2) 120PW15 = 120 kg K2O/ha + periodical water stress for 15 days; (3) 120DS15V = 120 kg K2O/ha + drought stress for 15 days during the vegetative stage; (4) 120DS25V = 120 kg K2O/ha + drought stress for 25 days and (5) 120DS15R = 120 kg K2O/ha + drought stress for 15 days during the reproductive stage, were evaluated in this experiment. Control and 120PW15 treatments were stopped at 100 DAS, and continuously saturated conditions were applied until harvest. It was found that rice under 120PW15 treatment showed tolerance to drought stress evidenced by increased water use efficiency, peroxidase (POX), catalase (CAT) and proline levels, maximum efficiency of photosystem II (fv/fm) and lower minimal fluorescence (fo), compared to other treatments. Path coefficient analysis revealed that most of parameters contribute directly rather than indirectly to rice yield. In this experiment, there were four factors that are directly involved with rice yield: grain soluble sugar, photosynthesis, water use efficiency and total chlorophyll content. The residual factors affecting rice yield are observed to be quite low in the experiment (0.350), confirming that rice yield was mostly influenced by the parameters measured during the study.


Asunto(s)
Fertilización , Oryza/metabolismo , Agua/metabolismo , Deshidratación/metabolismo , Oryza/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Potasio/metabolismo , Estrés Fisiológico/fisiología
10.
Molecules ; 18(9): 10973-88, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24013410

RESUMEN

A study was conducted to compare secondary metabolites and antioxidant activity of Labisia pumila Benth (Kacip Fatimah) in response to two sources of fertilizer [i.e., organic (chicken dung; 10% N:10% P2O5:10% K2O) and inorganic fertilizer (NPK green; 15% N, 15% P2O5, 15% K2O)] under different N rates of 0, 90, 180 and 270 kg N/ha. The experiment was arranged in a randomized complete block design replicated three times. At the end of 15 weeks, it was observed that the application of organic fertilizer enhanced the production of total phenolics, flavonoids, ascorbic acid, saponin and gluthathione content in L. pumila, compared to the use of inorganic fertilizer. The nitrate content was also reduced under organic fertilization. The application of nitrogen at 90 kg N/ha improved the production of secondary metabolites in Labisia pumila. Higher rates in excess of 90 kg N/ha reduced the level of secondary metabolites and antioxidant activity of this herb. The DPPH and FRAP activity was also highest at 90 kg N/ha. The results indicated that the use of chicken dung can enhance the production of secondary metabolites and improve antioxidant activity of this herb.


Asunto(s)
Fertilizantes , Depuradores de Radicales Libres/metabolismo , Primulaceae/metabolismo , Animales , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Compuestos de Bifenilo/química , Pollos , Heces , Flavonoides/química , Flavonoides/metabolismo , Depuradores de Radicales Libres/química , Radicales Libres/química , Glutatión/química , Glutatión/metabolismo , Nitratos/metabolismo , Fenoles/química , Fenoles/metabolismo , Fitoquímicos/metabolismo , Picratos/química , Primulaceae/química , Saponinas/química , Saponinas/metabolismo
11.
Molecules ; 18(7): 7957-76, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23884129

RESUMEN

An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.


Asunto(s)
Ácido Abscísico/farmacología , Antioxidantes/metabolismo , Orthosiphon/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Antioxidantes/farmacología , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno , Lipooxigenasa/metabolismo , Orthosiphon/enzimología , Hojas de la Planta/metabolismo , Superóxido Dismutasa/metabolismo
12.
Int J Mol Sci ; 13(11): 15321-42, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23203128

RESUMEN

A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (g(s)), intercellular CO(2) (C(i)), apparent quantum yield (ξ) and lower dark respiration rates (R(d)), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant.


Asunto(s)
Antioxidantes/metabolismo , Fertilizantes , Metaboloma , Metabolómica , Fotosíntesis , Potasio/metabolismo , Primulaceae/metabolismo , Ascorbato Peroxidasas/metabolismo , Ácido Ascórbico/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos , Catalasa/metabolismo , Activación Enzimática , Flavonoides/metabolismo , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Potasio/farmacología , Primulaceae/efectos de los fármacos , Primulaceae/crecimiento & desarrollo , Superóxido Dismutasa/metabolismo , beta-Fructofuranosidasa/metabolismo
13.
BMC Complement Altern Med ; 12: 229, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23176249

RESUMEN

BACKGROUND: The increase in atmospheric CO(2) concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M) and CO(2) enrichment (at two levels: 400 and 800 µmol·mol-1) on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara. METHODS: High-performance liquid chromatography (HPLC) with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS) assay. RESULTS: CO(2) levels of 800 µmol·mol-1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO(2) enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO(2) and SA. The highest chalcone synthase (CHS) activity was observed in plants treated with SA and CO(2) enrichment. Plants not treated with SA and kept under ambient CO(2) conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO(2) conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO(2) levels. As the level of CO(2) increased, the DPPH activity increased. Higher TBA activity was also recorded in the extracts of H Bara treated with SA and grown under high CO(2) conditions. CONCLUSIONS: The biological activities of both ginger varieties were enhanced when the plants were treated with SA and grown under elevated CO(2) concentration. The increase in the production of anthocyanin and flavonoids in plants treated with SA could be attributed to the increase in CHS activity under high CO(2) levels.


Asunto(s)
Antocianinas/análisis , Dióxido de Carbono/metabolismo , Flavonoides/análisis , Isoflavonas/análisis , Ácido Salicílico/farmacología , Zingiber officinale/química , Antocianinas/metabolismo , Cromatografía Líquida de Alta Presión , Cambio Climático , Ecosistema , Flavonoides/metabolismo , Zingiber officinale/crecimiento & desarrollo , Zingiber officinale/metabolismo , Isoflavonas/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo
14.
Int J Mol Sci ; 13(5): 5290-5306, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22754297

RESUMEN

A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 µmol/m(2)/s) for 16 weeks. As irradiance levels increased from 225 to 900 µmol/m(2)/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 µmol/m(2)/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition.


Asunto(s)
Antioxidantes/metabolismo , Flavonoides/metabolismo , Fenoles/metabolismo , Fotosíntesis , Primulaceae/fisiología , Antocianinas/química , Antocianinas/metabolismo , Antioxidantes/química , Flavonoides/química , Luz , Fenoles/química , Fenilanina Amoníaco-Liasa/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Primulaceae/química , Primulaceae/enzimología
15.
Molecules ; 17(6): 7305-22, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22695235

RESUMEN

A randomized complete block design 2 × 4 experiment was designed and conducted for 15 weeks to characterize the relationships between production of total phenolics, flavonoid, anthocyanin, leaf gas exchange, total chlorophyll, phenylalanine ammonia-lyase (PAL) and malondialdehyde (MDA) activity in two varieties of Labisia pumila Benth, namely the var. alata and pumila, under four levels of evapotranspiration replacement (ER) (100%; well watered), (75%, moderate water stress), (50%; high water stress) and (25%; severe water stress). The production of total phenolics, flavonoids, anthocyanin, soluble sugar and relative leaf water content was affected by the interaction between varieties and SWC. As the ER levels decreased from 100% to 25%, the production of PAL and MDA activity increased steadily. At the highest (100%) ER L. pumila exhibited significantly higher net photosynthesis, apparent quantum yield, maximum efficiency of photosystem II (f(v)/f(m)) and lower dark respiration rates compared to the other treatment. The production of total phenolics, flavonoids and anthocyanin was also found to be higher under high water stress (50% ER replacement) compared to severe water stress (25% ER). From this study, it was observed that as net photosynthesis, apparent quantum yield and chlorophyll content were downregulated under high water stress the production of total phenolics, flavonoids and anthocyanin were upregulated implying that the imposition of high water stress can enhance the medicinal properties of L. pumila Benth.


Asunto(s)
Malondialdehído/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Fotosíntesis , Primulaceae/metabolismo , Suelo/química , Agua/química , Antocianinas/química , Antocianinas/metabolismo , Clorofila/química , Flavonoides/química , Flavonoides/metabolismo , Metabolismo de los Lípidos , Oxidación-Reducción , Fenoles/química , Fenoles/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Primulaceae/química , Solubilidad , Sacarosa/química
16.
Molecules ; 17(5): 5195-211, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22628041

RESUMEN

A split plot 3 by 3 experiment was designed to investigate the relationships among production of primary metabolites (soluble sugar and starch), secondary metabolites (total flavonoids, TF; total phenolics, TP), phenylalanine lyase (PAL) activity (EC 4.3.1.5), protein and antioxidant activity (FRAP) of three progenies of oil palm seedlings, namely Deli AVROS, Deli Yangambi and Deli URT, under three levels of CO2 enrichment (400, 800 and 1,200 µmol·mol⁻¹) for 15 weeks of exposure. During the study, the treatment effects were solely contributed by CO2 enrichment levels; no progenies and interaction effects were observed. As CO2 levels increased from 400 to 1,200 µmol·mol⁻¹, the production of carbohydrate increased steadily, especially for starch more than soluble sugar. The production of total flavonoids and phenolics contents, were the highest under 1,200 and lowest at 400 µmol·mol⁻¹. It was found that PAL activity was peaked under 1,200 µmol·mol⁻¹ followed by 800 µmol·mol⁻¹ and 400 µmol·mol⁻¹. However, soluble protein was highest under 400 µmol·mol⁻¹ and lowest under 1,200 µmol·mol⁻¹. The sucrose/starch ratio, i.e., the indication of sucrose phosphate synthase actvity (EC 2.4.1.14) was found to be lowest as CO2 concentration increased from 400 > 800 > 1,200 µmol·mol⁻¹. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased with increasing CO2 levels, and was significantly lower than vitamin C and α-tocopherol but higher than butylated hydroxytoluene (BHT). Correlation analysis revealed that nitrogen has a significant negative correlation with carbohydrate, secondary metabolites and FRAP activity indicating up-regulation of production of carbohydrate, secondary metabolites and antioxidant activity of oil palm seedling under elevated CO2 was due to reduction in nitrogen content in oil palm seedling expose to high CO2 levels.


Asunto(s)
Antioxidantes/metabolismo , Arecaceae/metabolismo , Dióxido de Carbono/metabolismo , Plantones/metabolismo , Metabolismo de los Hidratos de Carbono , Flavonoides/metabolismo , Metaboloma , Metabolómica , Nitrógeno/metabolismo , Fenoles/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Solubilidad , Almidón/metabolismo
17.
Molecules ; 17(6): 6331-47, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22634843

RESUMEN

A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO2 (400, 800 and 1,200 µmol·mol⁻¹) on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL) and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata) after 15 weeks of exposure. HPLC analysis revealed a strong influence of increased CO2 concentration on the modification of phenolic and flavonoid profiles, whose intensity depended on the interaction between CO2 levels and L. pumila varieties. Gallic acid and quercetin were the most abundant phenolics and flavonoids commonly present in all the varieties. With elevated CO2 (1,200 µmol·mol⁻¹) exposure, gallic acid increased tremendously, especially in var. alata and pumila (101-111%), whilst a large quercetin increase was noted in var. lanceolata (260%), followed closely by alata (201%). Kaempferol, although detected under ambient CO2 conditions, was undetected in all varieties after exposure. Instead, caffeic acid was enhanced tremendously in var. alata (338~1,100%) and pumila (298~433%). Meanwhile, pyragallol and rutin were only seen in var. alata (810 µg·g⁻¹ DW) and pumila (25 µg·g⁻¹ DW), respectively, under ambient conditions; but the former compound went undetected in all varieties while rutin continued to increase by 262% after CO2 enrichment. Interestingly, naringenin that was present in all varieties under ambient conditions went undetected under enrichment, except for var. pumila where it was enhanced by 1,100%. PAL activity, DPPH and FRAP also increased with increasing CO2 levels implying the possible improvement of health-promoting quality of Malaysian L. pumila under high CO2 enrichment conditions.


Asunto(s)
Antioxidantes/metabolismo , Dióxido de Carbono/metabolismo , Flavonoides/metabolismo , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Primulaceae/metabolismo , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Activación Enzimática , Flavonoides/química , Depuradores de Radicales Libres/metabolismo , Oxidación-Reducción , Fenoles/química , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Primulaceae/química
18.
Int J Mol Sci ; 13(1): 393-408, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22312260

RESUMEN

A split plot 3 by 4 experiment was designed to characterize the relationship between production of gluthatione (GSH), oxidized gluthatione (GSSG), total flavonoid, anthocyanin, ascorbic acid and antioxidant activities (FRAP and DPPH) in three varieties of Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under four levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) for 15 weeks. The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effects observed. As the nitrogen levels decreased from 270 to 0 kg N/ha, the production of GSH and GSSG, anthocyanin, total flavonoid and ascorbic acid increased steadily. At the highest nitrogen treatment level, L. pumila exhibited significantly lower antioxidant activities (DPPH and FRAP) than those exposed to limited nitrogen growing conditions. Significant positive correlation was obtained between antioxidant activities (DPPH and FRAP), total flavonoid, GSH, GSSG, anthocyanin and ascorbic acid suggesting that an increase in the antioxidative activities in L. pumila under low nitrogen fertilization could be attributed to higher contents of these compounds. From this observation, it could be concluded that in order to avoid negative effects on the quality of L. pumila, it is advisable to avoid excessive application of nitrogen fertilizer when cultivating the herb for its medicinal use.


Asunto(s)
Antocianinas/química , Antioxidantes/química , Ácido Ascórbico/química , Flavonoides/química , Glutatión/química , Nitrógeno/metabolismo , Primulaceae/química , Antocianinas/análisis , Antioxidantes/metabolismo , Ácido Ascórbico/análisis , Fertilizantes , Flavonoides/análisis , Glutatión/análisis , Malasia , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Primulaceae/metabolismo , Espectrofotometría
19.
Molecules ; 17(2): 1159-76, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22286668

RESUMEN

The resource availability hypothesis predicts an increase in the allocation to secondary metabolites when carbon gain is improved relative to nutrient availability, which normally occurs during periods of low irradiance. The present work was carried out to confirm this hypothesis by investigating the effects of decreasing irradiance on the production of plant secondary metabolites (flavonoids and phenolics) in the herbal plant Orthosiphon stamineus, and to characterize this production by carbohydrate, H(2)O(2), and malondialdehyde (MDA) levels, net photosynthesis, leaf chlorophyll content and carbon to nitrogen ratio (C/N). Four levels of irradiance (225, 500, 625 and 900 µmol/m(2)/s) were imposed onto two-week old seedlings for 12 weeks in a randomized complete block design experiment. Peak production of total flavonoids, phenolics, soluble sugar, starch and total non-structural carbohydrate ocurred under low irradiance of 225 µmol/m(2)/s, and decreased with increasing irradiance. The up-regulation of secondary metabolites could be explained by the concomitant increases in H(2)O(2) and MDA activities under low irradiance. This condition also resulted in enhanced C/N ratio signifying a reduction in nitrogen levels, which had established significant negative correlations with net photosynthesis, total biomass and total chlorophyll content, indicating the possible existence of a trade-off between growth and secondary metabolism under low irradiance with reduced nitrogen content. The competition between total chlorophyll and secondary metabolites production, as exhibited by the negative correlation coefficient under low irradiance, also suggests a sign of gradual switch of investment from chlorophyll to polyphenols production.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Luz , Malondialdehído/metabolismo , Orthosiphon/metabolismo , Fotosíntesis , Biomasa , Clorofila/metabolismo , Peroxidación de Lípido , Orthosiphon/efectos de la radiación
20.
Int J Mol Sci ; 12(8): 5238-54, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21954355

RESUMEN

A split plot 3 by 4 experiment was designed to examine the impact of 15-week variable levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) on the characteristics of total flavonoids (TF), total phenolics (TP), total non structurable carbohydrate (TNC), net assimilation rate, leaf chlorophyll content, carbon to nitrogen ratio (C/N), phenyl alanine lyase activity (PAL) and protein content, and their relationships, in three varieties of Labisia pumila Blume (alata, pumila and lanceolata). The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effect observed. As nitrogen levels increased from 0 to 270 kg N/ha, the production of TNC was found to decrease steadily. Production of TF and TP reached their peaks under 0 followed by 90, 180 and 270 kg N/ha treatment. However, net assimilation rate was enhanced as nitrogen fertilization increased from 0 to 270 kg N/ha. The increase in production of TP and TF under low nitrogen levels (0 and 90 kg N/ha) was found to be correlated with enhanced PAL activity. The enhancement in PAL activity was followed by reduction in production of soluble protein under low nitrogen fertilization indicating more availability of amino acid phenyl alanine (phe) under low nitrogen content that stimulate the production of carbon based secondary metabolites (CBSM). The latter was manifested by high C/N ratio in L. pumila plants.


Asunto(s)
Metabolismo Basal , Fertilizantes , Metaboloma , Metabolómica , Nitrógeno/metabolismo , Primulaceae/metabolismo , Metabolismo Secundario , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Carbono/química , Carbono/metabolismo , Clorofila/química , Clorofila/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Malasia , Nitrógeno/química , Fenoles/química , Fenoles/metabolismo , Fotosíntesis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Primulaceae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...