Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Heliyon ; 10(1): e24032, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38268584

RESUMEN

The link between gut and lung starts as early as during organogenesis. Even though they are anatomically distinct, essential bidirectional crosstalk via complex mechanisms supports GLA. Emerging studies have demonstrated the association of gut and lung diseases via multifaceted mechanisms. Advancements in omics and metagenomics technologies revealed a potential link between gut and lung microbiota, adding further complexity to GLA. Despite substantial studies on GLA in various disease models, mechanisms beyond microbial dysbiosis regulating the interplay between gut and lung tissues during disease conditions are not thoroughly reviewed. This review outlines disease specific GLA mechanisms, emphasizing research gaps with a focus on gut-to-lung direction based on current GLA literature. Moreover, the review discusses potential gut microbiota and their products like metabolites, immune modulators, and non-bacterial contributions as a basis for developing treatment strategies for lung diseases. Advanced experimental methods, modern diagnostic tools, and technological advancements are also highlighted as crucial areas for improvement in developing novel therapeutic approaches for GLA-related diseases. In conclusion, this review underscores the importance of exploring additional mechanisms within the GLA to gain a deeper understanding that could aid in preventing and treating a wide spectrum of lung diseases.

2.
Adv Biol (Weinh) ; 8(1): e2300350, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37752729

RESUMEN

Asthma is an allergic airway inflammatory disease characterized by type 2 immune responses. Growing evidence suggests an association between allergic airways and intestinal diseases. However, the primary site of disease origin and initial mechanisms involved in the development of allergic airway inflammation (AAI) is not yet understood. Therefore, the initial contributing organs and mechanisms involved in the development of AAI are investigated using a mouse model of asthma. This study, without a local allergen challenge into the lungs, demonstrates a significant increase in intestinal inflammation with signature type-2 mediators including IL-4, IL-13, STAT6, eosinophils, and Th2 cells. In addition, gut leakage and mRNA expressions of gut leakage markers significantly increase in the intestine. Moreover, reduced mRNA expressions of tight junction proteins are observed in gut and interestingly, in lung tissues. Furthermore, in lung tissues, an increased pulmonary barrier permeability and IL-4 and IL-13 levels associated with significant increase of lipopolysaccharide-binding protein (LBP-gut leakage marker) and eosinophils are observed. However, with local allergen challenges into the lungs, these mechanisms are further enhanced in both gut and lungs. In conclusion, the primary gut originated inflammatory responses translocates into the lungs to orchestrate AAI in a mouse model of asthma.


Asunto(s)
Asma , Hipersensibilidad , Humanos , Interleucina-13/genética , Interleucina-4/genética , Inflamación , Alérgenos , ARN Mensajero/genética
3.
J Mol Med (Berl) ; 101(12): 1513-1526, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37819377

RESUMEN

Inflammatory bowel disease (IBD) is a prototypic complex disease in the gastrointestinal tract that has been increasing in incidence and prevalence in recent decades. Although the precise pathophysiology of IBD remains to be elucidated, a large body of evidence suggests the critical roles of mitochondria and intestinal microbiota in the pathogenesis of IBD. In addition to their contributions to the disease, both mitochondria and gut microbes may interact with each other and modulate disease-causing cell activities. Therefore, we hypothesize that dissecting this unique interaction may help to identify novel pathways involved in IBD, which will further contribute to discovering new therapeutic approaches to the disease. As poorly treated IBD significantly affects the quality of life of patients and is associated with risks and complications, successful treatment is crucial. In this review, we stratify previously reported experimental and clinical observations of the role of mitochondria and intestinal microbiota in IBD. Additionally, we review the intercommunication between mitochondria, and the intestinal microbiome in patients with IBD is reviewed along with the potential mediators for these interactions. We specifically focus on their roles in cellular metabolism in intestinal epithelial cells and immune cells. To this end, we propose a potential therapeutic intervention strategy for IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Calidad de Vida , Enfermedades Inflamatorias del Intestino/metabolismo , Mitocondrias/metabolismo
4.
Sci Rep ; 13(1): 17943, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863978

RESUMEN

Type 2 Diabetes Mellitus has reached epidemic levels globally, and several studies have confirmed a link between gut microbial dysbiosis and aberrant glucose homeostasis among people with diabetes. While the assumption is that abnormal metabolomic signatures would often accompany microbial dysbiosis, the connection remains largely unknown. In this study, we investigated how diet changed the gut bacteriome, mycobiome and metabolome in people with and without type 2 Diabetes.1 Differential abundance testing determined that the metabolites Propionate, U8, and 2-Hydroxybutyrate were significantly lower, and 3-Hydroxyphenyl acetate was higher in the high fiber diet compared to low fiber diet in the healthy control group. Next, using multi-omics factor analysis (MOFA2), we attempted to uncover sources of variability that drive each of the different groups (bacterial, fungal, and metabolite) on all samples combined (control and DM II). Performing variance decomposition, ten latent factors were identified, and then each latent factor was tested for significant correlations with age, BMI, diet, and gender. Latent Factor1 was the most significantly correlated. Remarkably, the model revealed that the mycobiome explained most of the variance in the DM II group (12.5%) whereas bacteria explained most of the variance in the control group (64.2% vs. 10.4% in the DM II group). The latent Factor1 was significantly correlated with dietary intake (q < 0.01). Further analyses of the impact of bacterial and fungal genera on Factor1 determined that the nine bacterial genera (Phocaeicola, Ligilactobacillus, Mesosutterella, Acidaminococcus, Dorea A, CAG-317, Caecibacter, Prevotella and Gemmiger) and one fungal genus (Malassezia furfur) were found to have high factor weights (absolute weight > 0.6). Alternatively, a linear regression model was fitted per disease group for each genus to visualize the relationship between the factor values and feature abundances, showing Xylose with positive weights and Propionate, U8, and 2-Hydroxybutyrate with negative weights. This data provides new information on the microbially derived changes that influence metabolic phenotypes in response to different diets and disease conditions in humans.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/genética , Disbiosis/microbiología , Propionatos , Multiómica , Metabolómica , Bacterias/genética , Ingestión de Alimentos , Hidroxibutiratos
6.
Front Psychiatry ; 13: 902433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928781

RESUMEN

Alterations in the oral microbiota composition may influence mental health. However, linkages between compositional changes in the oral microbiota and their role in mental health among cigarette smokers remain largely unknown. In this study, we used shotgun metagenomics data for the oral microbiome of 105 participants. The data showed Bacteroidota, Fusobacteriota, Firmicutes, Proteobacteria, and Actinobacteria to be the most abundant phyla; Streptococcus, Haemophilus D, and Veillonella are the most abundant genera. Then, we clustered our subjects into avoidance and activation groups based on the behavioral activation for depression scale (BADS). Interestingly, the avoidance group exhibited a higher oral microbiome richness and diversity (alpha diversity). Differential abundance testing between BADS avoidance and activation groups showed the phyla Bacteroidota (effect size 0.5047, q = 0.0037), Campylobacterota (effect size 0.4012, q = 0.0276), Firmicutes A (effect size 0.3646, q = 0.0128), Firmicutes I (effect size 0.3581, q = 0.0268), and Fusobacteriota (effect size 0.6055, q = 0.0018) to be significantly increased in the avoidance group, but Verrucomicrobiota (effect size-0.6544, q = 0.0401), was found to be significantly decreased in the avoidance risk group. Network analysis of the 50 genera displaying the highest variation between both groups identified Campylobacter B, Centipeda, and Veillonella as hub nodes in the avoidance group. In contrast, Haemophilus and Streptococcus were identified as hub nodes in the activation group. Next, we investigated functional profiles of the oral microbiota based on BADS avoidance and activation groups and found Lysine degradations pathway was significantly enriched between both groups (ANCOM-BC, q = 0.0692). Altogether, we provide evidence for the presence of depression-related changes in the oral microbiota of smokers and possible functional contribution. The identified differences provide new information to enrich our understanding of oral microbiota-brain axis interplay and their potential impact on mental health.

7.
Cells ; 10(6)2021 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-34070975

RESUMEN

CYP17A1 is a cytochrome P450 enzyme that has 17-alpha-hydroxylase and C17,20-lyase activities. Cyp17a11 deficiency is associated with high body mass and visceral fat deposition in atherosclerotic female ApoE knockout (KO, d/d or -/-) mice. In the present study, we aimed to investigate the effects of diet and Cyp17a1 genotype on the gut microbiome. Female Cyp17a1 (d/d) × ApoE (d/d) (DKO) and ApoE (d/d) (controls) were fed either standard chow or a Western-type diet (WTD), and we demonstrated the effects of genetics and diet on the body mass of the mice and composition of their gut microbiome. We found a significantly lower alpha diversity after accounting for the ecological network structure in DKO mice and WTD-fed mice compared with chow-fed ApoE(d/d). Furthermore, we found a strong significant positive association of the Firmicutes vs. Bacteroidota ratio with body mass and the circulating total cholesterol and triglyceride concentrations of the mice when feeding the WTD, independent of the Cyp17a1 genotype. Further pathway enrichment and network analyses revealed a substantial effect of Cyp17a1 genotype on associated cardiovascular and obesity-related pathways involving aspartate and L-arginine. Future studies are required to validate these findings and further investigate the role of aspartate/L-arginine pathways in the obesity and body fat distribution in our mouse model.


Asunto(s)
Aterosclerosis/metabolismo , Microbioma Gastrointestinal/fisiología , Microbiota/fisiología , Obesidad/complicaciones , Animales , Apolipoproteínas E/deficiencia , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Esteroide 17-alfa-Hidroxilasa/genética
9.
Hum Immunol ; 77(6): 522-6, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27125674

RESUMEN

OBJECTIVE: Limited data are available on the genetics of rheumatoid arthritis (RA) in Egyptians. Therefore, we investigated whether the confirmed genetic risk factors for RA in Europeans and/or Asians contribute to RA susceptibility in Egyptians. SUBJECTS AND METHODS: A set of seven single-nucleotide polymorphisms (SNPs) in the vicinity of CD28, TNFAIP3, PTPN22, PADI4 and HLA-DRA were tested in a large multi-centric RA cohort in Egypt, consisting of 394 cases and 398 matched controls. Patients were stratified based on the positivity of either anti-citrullinated protein antibodies (ACPAs) or rheumatoid factor (RF). RESULTS: Significant association was evident for three SNPs in this cohort: the CD28 (rs1980422) variant showed a strong association in the whole cohort (P=0.000119) and in seropositive subsets of the disease (PACPA+=0.004; PRF+=0.0005). Upon stratification, the PTPN22 (rs2476601) and TNFAIP3(rs5029939) variants showed association only with ACPA positive (PACPA+=0.00573) and negative (PACPA-=0.00999) phenotypes, respectively. CONCLUSION: Our results suggest that CD28(rs1980422) and PTPN22(rs2476601) contribute to RA-susceptibility in Egyptians. Failure to replicate the association of PADI4(rs2240340)/(PADI4_94) in Egyptian RA patients provides further support for the notion that genetic architecture of RA is different in multiple populations of European, Asian, African, and Middle Eastern ancestries. Further investigation using large-scale studies is thus needed to maximize the power of genetic association.


Asunto(s)
Artritis Reumatoide/genética , Antígenos CD28/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Adolescente , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Egipto , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto Joven
10.
J Autoimmun ; 18(2): 159-67, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11908948

RESUMEN

To provide a global analysis of genes involved in the inflammatory process in joints of DBA/1J mice suffering from collagen induced arthritis (CIA) we used oligonucleotide microarrays representing approximately 11,000 genes to determine the gene expression profile of the inflamed paws at peak of disease, and compared them to normal tissue. Peak of disease was determined from clinical evaluation of disease and histopathology of joints. Of the 11,000 genes assayed, 223 showed differential expression of four fold or more (187 upregulated and 36 downregulated). Ninety-five of the genes observed had well-characterized full length sequences in databases, and 128 were unknown (Ests). Inflammation resulted in a profile of increased gene expression of matrix metalloproteinases, immune-related, extra-cellular matrix and cell adhesion molecules, as well as molecules involved in cell division and transcription; differential regulation of molecules involved in signal transduction, protein synthesis and metabolism. Of the 55 genes with known chromosomal locations nine mapped to previously identified QTL, contributing to susceptibility or severity of CIA, i.e. MHC class I, II, Basigin, FAP, Cathepsin K, CD 53, RAF1, glucagon, and retinal taurine transporter. The profile of gene expression supports current theoretical models of disease progression and might open new perspectives for both diagnosis and treatment of arthritis.


Asunto(s)
Artritis Experimental/genética , Perfilación de la Expresión Génica , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Ligamiento Genético , Ratones , Ratones Endogámicos DBA , Análisis de Secuencia por Matrices de Oligonucleótidos , Carácter Cuantitativo Heredable , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...