Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; 14(21): 3850-3854, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31562698

RESUMEN

A palladium NNC-pincer complex at a 5 mol ppm loading efficiently catalyzed the Hiyama coupling reaction of aryl bromides with aryl(trialkoxy)silanes in propylene glycol to give the corresponding biaryls in excellent yields. This method was applied to the syntheses of adapalene and a biaryl-type liquid-crystalline compound, as well as to the derivatization of dextromethorphan and norfloxacin. ESI-MS and NMR analyses of the reaction mixture suggested the formation of pentacoordinate spirosilicate intermediates in situ. Preliminary theoretical studies revealed that the glycol-derived silicate intermediates formed in situ are quite reactive silicon reagents in the transmetalation step.

2.
ACS Appl Mater Interfaces ; 9(1): 36-41, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27992169

RESUMEN

Multifunctional catalysts are of great interest in catalysis because their multiple types of catalytic or functional groups can cooperatively promote catalytic transformations better than their constituents do individually. Herein we report a new synthetic route involving the surface functionalization of nanoporous silica with a rationally designed and synthesized dihydrosilane (3-aminopropylmethylsilane) that leads to the introduction of catalytically active grafted organoamine as well as single metal atoms and ultrasmall Pd or Ag-doped Pd nanoparticles via on-site reduction of metal ions. The resulting nanomaterials serve as highly effective bifunctional dehydrogenative catalysts for generation of H2 from formic acid.

3.
J Am Chem Soc ; 136(33): 11570-3, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25101719

RESUMEN

Inspired by homogeneous borane catalysts that promote Si-H bond activation, we herein describe an innovative method for surface modification of silica using hydrosilanes as the modification precursor and tris(pentafluorophenyl)borane (B(C6F5)3) as the catalyst. Since the surface modification reaction between surface silanol and hydrosilane is dehydrogenative, progress and termination of the reaction can easily be confirmed by the naked eye. This new metal-free process can be performed at room temperature and requires less than 5 min to complete. Hydrosilanes bearing a range of functional groups, including alcohols and carboxylic acids, have been immobilized by this method. An excellent preservation of delicate functional groups, which are otherwise decomposed in other methods, makes this methodology appealing for versatile applications.


Asunto(s)
Silanos/química , Dióxido de Silicio/química , Boranos/química , Catálisis , Estructura Molecular , Silanos/síntesis química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA