Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Nitric Oxide ; 146: 19-23, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521487

RESUMEN

The mammalian brain is exquisitely vulnerable to lack of oxygen. However, the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. In this narrative review, we present a case for sulfide catabolism as a key defense mechanism of the brain against acute oxygen shortage. We will examine literature on the role of sulfide in hypoxia/ischemia, deep hibernation, and leigh syndrome patients, and present our recent data that support the neuroprotective effects of sulfide catabolism and persulfide production. When oxygen levels become low, hydrogen sulfide (H2S) accumulates in brain cells and impairs the ability of these cells to use the remaining, available oxygen to produce energy. In recent studies, we found that hibernating ground squirrels, which can withstand very low levels of oxygen, have high levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize hydrogen sulfide in the brain. Silencing SQOR increased the sensitivity of the brain of squirrels and mice to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury in mice. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological agents that scavenge sulfide and/or increase persulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to ischemic injury to the brain or spinal cord. Drugs that oxidize hydrogen sulfide and/or increase persulfide may prove to be an effective approach to the treatment of patients experiencing brain injury caused by oxygen deprivation or mitochondrial dysfunction.


Asunto(s)
Hibernación , Neuroprotección , Hibernación/fisiología , Animales , Humanos , Sulfuros/metabolismo , Sulfuros/farmacología , Sulfuro de Hidrógeno/metabolismo , Encéfalo/metabolismo , Ratones , Sciuridae/metabolismo , Enfermedad de Leigh/metabolismo , Quinona Reductasas/metabolismo
2.
Nitric Oxide ; 146: 24-30, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521488

RESUMEN

BACKGROUND: Cardiopulmonary bypass (CPB) is associated with intravascular hemolysis which depletes endogenous nitric oxide (NO). The impact of hemolysis on pulmonary arterial compliance (PAC) and right ventricular systolic function has not been explored yet. We hypothesized that decreased NO availability is associated with worse PAC and right ventricular systolic function after CPB. METHODS: This is a secondary analysis of an observational cohort study in patients undergoing cardiac surgery with CPB at Massachusetts General Hospital, USA (2014-2015). We assessed PAC (stroke volume/pulmonary artery pulse pressure ratio), and right ventricular function index (RVFI) (systolic pulmonary arterial pressure/cardiac output), as well as NO consumption at 15 min, 4 h and 12 h after CPB. Patients were stratified by CPB duration. Further, we assessed the association between changes in NO consumption with PAC and RVFI between 15min and 4 h after CPB. RESULTS: PAC was lowest at 15min after CPB and improved over time (n = 50). RVFI was highest -worse right ventricular function- at CPB end and gradually decreased. Changes in hemolysis, PAC and RVFI differed over time by CPB duration. PAC inversely correlated with total pulmonary resistance (TPR). TPR and PAC positively and negatively correlated with RVFI, respectively. NO consumption between 15min and 4 h after CPB correlated with changes in PAC (-0.28 ml/mmHg, 95%CI -0.49 to -0.01, p = 0.012) and RVFI (0.14 mmHg*L-1*min, 95%CI 0.10 to 0.18, p < 0.001) after multivariable adjustments. CONCLUSION: PAC and RVFI are worse at CPB end and improve over time. Depletion of endogenous NO may contribute to explain changes in PAC and RVFI after CPB.


Asunto(s)
Puente Cardiopulmonar , Hemólisis , Arteria Pulmonar , Función Ventricular Derecha , Humanos , Masculino , Femenino , Persona de Mediana Edad , Función Ventricular Derecha/fisiología , Anciano , Arteria Pulmonar/fisiología , Arteria Pulmonar/fisiopatología , Óxido Nítrico/metabolismo , Sístole/fisiología , Estudios de Cohortes , Adaptabilidad
3.
Angew Chem Int Ed Engl ; 63(6): e202317487, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38100749

RESUMEN

Hydrogen sulfide (H2 S) is an endogenous gasotransmitter that plays important roles in redox signaling. H2 S overproduction has been linked to a variety of disease states and therefore, H2 S-depleting agents, such as scavengers, are needed to understand the significance of H2 S-based therapy. It is known that elevated H2 S can induce oxidative stress with elevated reactive oxygen species (ROS) formation, such as in H2 S acute intoxication. We explored the possibility of developing catalytic scavengers to simultaneously remove H2 S and ROS. Herein, we studied a series of selenium-based molecules as catalytic H2 S/H2 O2 scavengers. Inspired by the high reactivity of selenoxide compounds towards H2 S, 14 diselenide/monoselenide compounds were tested. Several promising candidates such as S6 were identified. Their activities in buffers, as well as in plasma- and cell lysate-containing solutions were evaluated. We also studied the reaction mechanism of this scavenging process. Finally, the combination of the diselenide catalyst and photosensitizers was used to achieve light-induced H2 S removal. These Se-based scavengers can be useful tools for understanding H2 S/ROS regulations.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Selenio , Especies Reactivas de Oxígeno , Estrés Oxidativo , Peróxido de Hidrógeno/farmacología
4.
iScience ; 26(11): 108360, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38033629

RESUMEN

Vascular calcification is a hallmark of atherosclerotic disease and serves as a strong predictor and risk factor for cardiovascular events. Growing evidence suggests that autophagy may play a protective role in early atherosclerosis. The precise effects of autophagy on VSMC-mediated calcification remain unknown. In this study, we utilized multi-omic profiling to investigate impaired autophagy at the transcriptional level as a key driver of VSMC calcification. Our findings revealed that impaired autophagy is an essential determinant of VSMC calcification. We observed that an osteogenic environment affects the open chromatin status of VSMCs, compromising the transcriptional activation of autophagy initiation genes. In vivo experiments involve pharmacological and genetic activation of autophagy using mouse models of spontaneous large (Mgp-/-) and small (Abcc6-/-) artery calcification. Taken together, these data advance our mechanistic understanding of vascular calcification and provide important insights for a broad range of cardiovascular diseases involving VSMC phenotype switch.

5.
Am J Respir Crit Care Med ; 208(12): 1293-1304, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774011

RESUMEN

Rationale: The effects of high-dose inhaled nitric oxide on hypoxemia in coronavirus disease (COVID-19) acute respiratory failure are unknown. Objectives: The primary outcome was the change in arterial oxygenation (PaO2/FiO2) at 48 hours. The secondary outcomes included: time to reach a PaO2/FiO2.300mmHg for at least 24 hours, the proportion of participants with a PaO2/FiO2.300mmHg at 28 days, and survival at 28 and at 90 days. Methods: Mechanically ventilated adults with COVID-19 pneumonia were enrolled in a phase II, multicenter, single-blind, randomized controlled parallel-arm trial. Participants in the intervention arm received inhaled nitric oxide at 80 ppm for 48 hours, compared with the control group receiving usual care (without placebo). Measurements and Main Results: A total of 193 participants were included in the modified intention-to-treat analysis. The mean change in PaO2/FiO2 ratio at 48 hours was 28.3mmHg in the intervention group and 21.4mmHg in the control group (mean difference, 39.1mmHg; 95% credible interval [CrI], 18.1 to 60.3). The mean time to reach a PaO2/FiO2.300mmHg in the interventional group was 8.7 days, compared with 8.4 days for the control group (mean difference, 0.44; 95% CrI, 23.63 to 4.53). At 28 days, the proportion of participants attaining a PaO2/FiO2.300mmHg was 27.7% in the inhaled nitric oxide group and 17.2% in the control subjects (risk ratio, 2.03; 95% CrI, 1.11 to 3.86). Duration of ventilation and mortality at 28 and 90 days did not differ. No serious adverse events were reported. Conclusions: The use of high-dose inhaled nitric oxide resulted in an improvement of PaO2/FiO2 at 48 hours compared with usual care in adults with acute hypoxemic respiratory failure due to COVID-19.


Asunto(s)
COVID-19 , Insuficiencia Respiratoria , Adulto , Humanos , Óxido Nítrico/uso terapéutico , COVID-19/complicaciones , Método Simple Ciego , Insuficiencia Respiratoria/tratamiento farmacológico , Insuficiencia Respiratoria/etiología , Respiración Artificial , Administración por Inhalación
6.
Anesthesiology ; 139(5): 628-645, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37487175

RESUMEN

BACKGROUND: The catabolism of the essential amino acid tryptophan to kynurenine is emerging as a potential key pathway involved in post-cardiac arrest brain injury. The aim of this study was to evaluate the effects of the modulation of kynurenine pathway on cardiac arrest outcome through genetic deletion of the rate-limiting enzyme of the pathway, indoleamine 2,3-dioxygenase. METHODS: Wild-type and indoleamine 2,3-dioxygenase-deleted (IDO-/-) mice were subjected to 8-min cardiac arrest. Survival, neurologic outcome, and locomotor activity were evaluated after resuscitation. Brain magnetic resonance imaging with diffusion tensor and diffusion-weighted imaging sequences was performed, together with microglia and macrophage activation and neurofilament light chain measurements. RESULTS: IDO-/- mice showed higher survival compared to wild-type mice (IDO-/- 11 of 16, wild-type 6 of 16, log-rank P = 0.036). Neurologic function was higher in IDO-/- mice than in wild-type mice after cardiac arrest (IDO-/- 9 ± 1, wild-type 7 ± 1, P = 0.012, n = 16). Indoleamine 2,3-dioxygenase deletion preserved locomotor function while maintaining physiologic circadian rhythm after cardiac arrest. Brain magnetic resonance imaging with diffusion tensor imaging showed an increase in mean fractional anisotropy in the corpus callosum (IDO-/- 0.68 ± 0.01, wild-type 0.65 ± 0.01, P = 0.010, n = 4 to 5) and in the external capsule (IDO-/- 0.47 ± 0.01, wild-type 0.45 ± 0.01, P = 0.006, n = 4 to 5) in IDO-/- mice compared with wild-type ones. Increased release of neurofilament light chain was observed in wild-type mice compared to IDO-/- (median concentrations [interquartile range], pg/mL: wild-type 1,138 [678 to 1,384]; IDO-/- 267 [157 to 550]; P < 0.001, n = 3 to 4). Brain magnetic resonance imaging with diffusion-weighted imaging revealed restriction of water diffusivity 24 h after cardiac arrest in wild-type mice; indoleamine 2,3-dioxygenase deletion prevented water diffusion abnormalities, which was reverted in IDO-/- mice receiving l-kynurenine (apparent diffusion coefficient, µm2/ms: wild-type, 0.48 ± 0.07; IDO-/-, 0.59 ± 0.02; IDO-/- and l-kynurenine, 0.47 ± 0.08; P = 0.007, n = 6). CONCLUSIONS: The kynurenine pathway represents a novel target to prevent post-cardiac arrest brain injury. The neuroprotective effects of indoleamine 2,3-dioxygenase deletion were associated with preservation of brain white matter microintegrity and with reduction of cerebral cytotoxic edema.


Asunto(s)
Lesiones Encefálicas , Indolamina-Pirrol 2,3,-Dioxigenasa , Animales , Ratones , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina , Imagen de Difusión Tensora , Agua
7.
Circulation ; 148(8): 703-728, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37458106

RESUMEN

Vaping and electronic cigarette (e-cigarette) use have grown exponentially in the past decade, particularly among youth and young adults. Cigarette smoking is a risk factor for both cardiovascular and pulmonary disease. Because of their more limited ingredients and the absence of combustion, e-cigarettes and vaping products are often touted as safer alternative and potential tobacco-cessation products. The outbreak of e-cigarette or vaping product use-associated lung injury in the United States in 2019, which led to >2800 hospitalizations, highlighted the risks of e-cigarettes and vaping products. Currently, all e-cigarettes are regulated as tobacco products and thus do not undergo the premarket animal and human safety studies required of a drug product or medical device. Because youth prevalence of e-cigarette and vaping product use was as high as 27.5% in high school students in 2019 in the United States, it is critical to assess the short-term and long-term health effects of these products, as well as the development of interventional and public health efforts to reduce youth use. The objectives of this scientific statement are (1) to describe and discuss e-cigarettes and vaping products use patterns among youth and adults; (2) to identify harmful and potentially harmful constituents in vaping aerosols; (3) to critically assess the molecular, animal, and clinical evidence on the acute and chronic cardiovascular and pulmonary risks of e-cigarette and vaping products use; (4) to describe the current evidence of e-cigarettes and vaping products as potential tobacco-cessation products; and (5) to summarize current public health and regulatory efforts of e-cigarettes and vaping products. It is timely, therefore, to review the short-term and especially the long-term implications of e-cigarettes and vaping products on cardiopulmonary health. Early molecular and clinical evidence suggests various acute physiological effects from electronic nicotine delivery systems, particularly those containing nicotine. Additional clinical and animal-exposure model research is critically needed as the use of these products continues to grow.


Asunto(s)
Sistema Cardiovascular , Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Adolescente , Adulto Joven , Animales , Humanos , Estados Unidos/epidemiología , Vapeo/efectos adversos , American Heart Association , Nicotina
8.
Nitric Oxide ; 138-139: 17-25, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37277062

RESUMEN

BACKGROUND: Several nitric oxide (NO) generating devices have been developed to deliver NO between 1 part per million (ppm) and 80 ppm. Although inhalation of high-dose NO may exert antimicrobial effects, the feasibility and safety of producing high-dose (more than 100 ppm) NO remains to be established. In the current study, we designed, developed, and tested three high-dose NO generating devices. METHODS: We constructed three NO generating devices: a double spark plug NO generator, a high-pressure single spark plug NO generator, and a gliding arc NO generator. The NO and NO2 concentrations were measured at different gas flows and under various atmospheric pressures. The double spark plug NO generator was designed to deliver gas through an oxygenator and mixing with pure oxygen. The high-pressure and gliding arc NO generators were used to deliver gas through a ventilator into artificial lungs to mimic delivering high-dose NO in the clinical settings. The energy consumption was measured and compared among the three NO generators. RESULTS: The double spark plug NO generator produced 200 ± 2 ppm (mean ± SD) of NO at gas flow of 8 L/min (or 320 ± 3 ppm at gas flow of 5 L/min) with electrode gap of 3 mm. The nitrogen dioxide (NO2) levels were below 3.0 ± 0.1 ppm when mixing with various volumes of pure oxygen. The addition of a second generator increased the delivered NO from 80 (with one spark plug) to 200 ppm. With the high-pressure chamber, the NO concentration reached 407 ± 3 ppm with continuous air flow at 5 L/min when employing the 3 mm electrode gap under 2.0 atmospheric pressure (ATA). When compared to 1 ATA, NO production was increased 22% at 1.5 ATA and 34% at 2 ATA. The NO level was 180 ± 1 ppm when connecting the device to a ventilator with a constant inspiratory airflow of 15 L/min, and NO2 levels were below 1 (0.93 ± 0.02) ppm. The gliding arc NO generator produced up to 180 ± 4 ppm of NO when connecting the device to a ventilator, and the NO2 level was below 1 (0.91 ± 0.02) ppm in all testing conditions. The gliding arc device required more power (in watts) to generate the same concentrations of NO when compared to double spark plug or high-pressure NO generators. CONCLUSIONS: Our results demonstrated that it is feasible to enhance NO production (more than 100 ppm) while maintaining NO2 level relatively low (less than 3 ppm) with the three recently developed NO generating devices. Future studies might include these novel designs to deliver high doses of inhaled NO as an antimicrobial used to treat upper and lower respiratory tract infections.


Asunto(s)
Óxido Nítrico , Dióxido de Nitrógeno , Terapia Respiratoria , Pulmón , Administración por Inhalación , Oxígeno
9.
Hum Mol Genet ; 32(16): 2600-2610, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37260376

RESUMEN

Friedreich's ataxia (FA) is a devastating, multi-systemic neurodegenerative disease affecting thousands of people worldwide. We previously reported that oxygen is a key environmental variable that can modify FA pathogenesis. In particular, we showed that chronic, continuous normobaric hypoxia (11% FIO2) prevents ataxia and neurological disease in a murine model of FA, although it did not improve cardiovascular pathology or lifespan. Here, we report the pre-clinical evaluation of seven 'hypoxia-inspired' regimens in the shFxn mouse model of FA, with the long-term goal of designing a safe, practical and effective regimen for clinical translation. We report three chief results. First, a daily, intermittent hypoxia regimen (16 h 11% O2/8 h 21% O2) conferred no benefit and was in fact harmful, resulting in elevated cardiac stress and accelerated mortality. The detrimental effect of this regimen is likely owing to transient tissue hyperoxia that results when daily exposure to 21% O2 combines with chronic polycythemia, as we could blunt this toxicity by pharmacologically inhibiting polycythemia. Second, we report that more mild regimens of chronic hypoxia (17% O2) confer a modest benefit by delaying the onset of ataxia. Third, excitingly, we show that initiating chronic, continuous 11% O2 breathing once advanced neurological disease has already started can rapidly reverse ataxia. Our studies showcase both the promise and limitations of candidate hypoxia-inspired regimens for FA and underscore the need for additional pre-clinical optimization before future translation into humans.


Asunto(s)
Ataxia de Friedreich , Enfermedades Neurodegenerativas , Policitemia , Humanos , Ratones , Animales , Ataxia de Friedreich/genética , Modelos Animales de Enfermedad , Hipoxia , Oxígeno , Ataxia
10.
Lasers Surg Med ; 55(6): 590-600, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37253390

RESUMEN

BACKGROUND AND OBJECTIVES: Approximately 50,000 emergency department visits per year due to carbon monoxide (CO) poisoning occur in the United States alone. Tissue hypoxia can occur at very low CO concentration exposures because CO binds with a 250-fold higher affinity than oxygen to hemoglobin. The most effective therapy is 100% hyperbaric oxygen (HBO) respiration. However, there are only a limited number of cases with ready accessibility to the specialized HBO chambers. In previous studies, we developed an extracorporeal veno-venous membrane oxygenator that facilitates exposure of blood to an external visible light source to photo-dissociate carboxyhemoglobin (COHb) and significantly increase CO removal from CO-poisoned blood (photo-extracorporeal veno-venous membrane oxygenator [p-ECMO]). One objective of this study was to describe in vitro experiments with different laser wavelength sources to compare CO elimination rates in a small unit-cell ECMO device integrated with a light-diffusing optical fiber. A second objective was to develop a mathematical model that predicts CO elimination rates in the unit-cell p-ECMO  device design upon which larger devices can be based. STUDY DESIGN/MATERIAL AND METHODS: Two small unit-cell p-ECMO devices consisted of a plastic capillary with a length and inside diameter of 10 cm and 1.15 mm, respectively. Either five (4-1 device) or seven (6-1 device) gas exchange tubes were placed in the plastic capillary and a light-diffusing fiber was inserted into one of the gas exchange tubes. Light from lasers emitting either 635 nm or 465 nm wavelengths was coupled into the light-diffusing fiber as oxygen flowed through the gas exchange membranes. To assess the ability of the device to remove CO from blood in vitro, the percent COHb reduction in a single pass through the device was assessed with and without light. The Navier Stokes equations, Carreau-Yesuda model, Boltzman equation for light distribution, and hemoglobin kinetic rate equations, including photo-dissociation, were combined in a mathematical model to predict COHb elimination in the experiments. RESULTS: For the unit-cell devices, the COHb removal rate increases with increased 635 nm laser power, increased blood time in the device, and greater gas exchange membrane surface-to-blood volume ratio. The 6-1 device COHb half-life versus that of the 4-1 device with 4 W at 635 nm light was 1.5 min versus 4.25 min, respectively. At 1 W laser power, 635 nm and 465 nm exhibited similar CO removal rates. The COHb half-life times of the 6-1 device were 1.25, 2.67, and 8.5 min at 635 nm (4 W), 465 nm (1 W), and 100% oxygen only, respectively. The mathematical model predicted the experimental results. An analysis of the in vivo COHb half-life of oxygen respiration therapy versus an adjunct therapy with a p-ECMO device and oxygen respiration shows a reduction from 90 min to as low as 10 min, depending on the device design. CONCLUSION: In this study, we experimentally studied and developed a mathematical model of a small unit-cell ECMO device integrated with a light-diffusing fiber illuminated with laser light. The unit-cell device forms the basis for a larger device and, in an adjunct therapy with oxygen respiration, has the potential to remove COHb at much higher rates than oxygen therapy alone. The mathematical model can be used to optimize the design in practical implementations to quickly and efficiently remove CO from CO-poisoned blood.


Asunto(s)
Intoxicación por Monóxido de Carbono , Humanos , Intoxicación por Monóxido de Carbono/terapia , Oxigenadores de Membrana , Hemoglobinas/análisis , Hemoglobinas/metabolismo , Carboxihemoglobina/análisis , Carboxihemoglobina/metabolismo , Oxígeno , Modelos Teóricos
11.
Med ; 4(7): 432-456.e6, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37257452

RESUMEN

BACKGROUND: Most patients hospitalized after cardiac arrest (CA) die because of neurological injury. The systemic inflammatory response after CA is associated with neurological injury and mortality but remains poorly defined. METHODS: We determine the innate immune network induced by clinical CA at single-cell resolution. FINDINGS: Immune cell states diverge as early as 6 h post-CA between patients with good or poor neurological outcomes 30 days after CA. Nectin-2+ monocyte and Tim-3+ natural killer (NK) cell subpopulations are associated with poor outcomes, and interactome analysis highlights their crosstalk via cytokines and immune checkpoints. Ex vivo studies of peripheral blood cells from CA patients demonstrate that immune checkpoints are a compensatory mechanism against inflammation after CA. Interferon γ (IFNγ)/interleukin-10 (IL-10) induced Nectin-2 on monocytes; in a negative feedback loop, Nectin-2 suppresses IFNγ production by NK cells. CONCLUSIONS: The initial hours after CA may represent a window for therapeutic intervention in the resolution of inflammation via immune checkpoints. FUNDING: This work was supported by funding from the American Heart Association, Brigham and Women's Hospital Department of Medicine, the Evergreen Innovation Fund, and the National Institutes of Health.


Asunto(s)
Citocinas , Transcriptoma , Estados Unidos , Humanos , Femenino , Citocinas/farmacología , Nectinas/genética , Células Asesinas Naturales , Inflamación
12.
Br J Anaesth ; 131(1): 67-78, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37142466

RESUMEN

BACKGROUND: Although sex differences in anaesthetic sensitivity have been reported, what underlies these differences is unknown. In rodents, one source of variability in females is the oestrous cycle. Here we test the hypothesis that the oestrous cycle impacts emergence from general anaesthesia. METHODS: Time to emergence was measured after isoflurane (2 vol% for 1 h), sevoflurane (3 vol% for 20 min), dexmedetomidine (50 µg kg-1 i.v., infused over 10 min), or propofol (10 mg kg-1 i.v. bolus) during proestrus, oestrus, early dioestrus, and late dioestrus in female Sprague-Dawley rats (n=24). EEG recordings were taken during each test for power spectral analysis. Serum was analysed for 17ß-oestradiol and progesterone concentrations. The effect of oestrous cycle stage on return of righting latency was assessed using a mixed model. The association between righting latency and serum hormone concentration was tested by linear regression. Mean arterial blood pressure and arterial blood gases were assessed in a subset of rats after dexmedetomidine and compared in a mixed model. RESULTS: Oestrous cycle did not affect righting latency after isoflurane, sevoflurane, or propofol. When in the early dioestrus stage, rats emerged more rapidly from dexmedetomidine than in the proestrus (P=0.0042) or late dioestrus (P=0.0230) stage and showed reduced overall power in frontal EEG spectra 30 min after dexmedetomidine (P=0.0049). 17ß-Oestradiol and progesterone serum concentrations did not correlate with righting latency. Oestrous cycle did not affect mean arterial blood pressure or blood gases during dexmedetomidine. CONCLUSIONS: In female rats, the oestrous cycle significantly impacts emergence from dexmedetomidine-induced unconsciousness. However, 17ß-oestradiol and progesterone serum concentrations do not correlate with the observed changes.


Asunto(s)
Dexmedetomidina , Isoflurano , Propofol , Ratas , Femenino , Masculino , Animales , Propofol/farmacología , Sevoflurano/farmacología , Isoflurano/farmacología , Dexmedetomidina/farmacología , Progesterona/farmacología , Ratas Sprague-Dawley , Anestesia General , Estradiol/farmacología , Gases
13.
Redox Biol ; 60: 102620, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36753926

RESUMEN

BACKGROUND: Delayed paraplegia is a devastating complication of thoracoabdominal aortic surgery. Hydrogen sulfide (H2S) was reported to be protective in a mouse model of spinal cord ischemia and the beneficial effect of H2S has been attributed to polysulfides. The objective of this study was to investigate the effects of polysulfides on delayed paraplegia after spinal cord ischemia. METHODS AND RESULTS: Spinal cord ischemia was induced in male and female C57BL/6J mice by clamping the aortic arch and the left subclavian artery. Glutathione trisulfide (GSSSG), glutathione (GSH), glutathione disulfide (GSSG), or vehicle alone was administered intranasally at 0, 8, 23, and 32 h after surgery. All mice treated with vehicle alone developed paraplegia within 48 h after surgery. GSSSG, but not GSH or GSSG, prevented paraplegia in 8 of 11 male mice (73%) and 6 of 8 female mice (75%). Intranasal administration of 34S-labeled GSSSG rapidly increased 34S-labeled sulfane sulfur species in the lumbar spinal cord. In mice treated with intranasal GSSSG, there were increased sulfane sulfur levels, and decreased neurodegeneration, microglia activation, and caspase-3 activation in the lumbar spinal cord. In vitro studies using murine primary cortical neurons showed that GSSSG increased intracellular levels of sulfane sulfur. GSSSG, but not GSH or GSSG, dose-dependently improved cell viability after oxygen and glucose deprivation/reoxygenation (OGD/R). Pantethine trisulfide (PTN-SSS) also increased intracellular sulfane sulfur and improved cell viability after OGD/R. Intranasal administration of PTN-SSS, but not pantethine, prevented paraplegia in 6 of 9 male mice (66%). CONCLUSIONS: Intranasal administration of polysulfides rescued mice from delayed paraplegia after transient spinal cord ischemia. The neuroprotective effects of GSSSG were associated with increased levels of polysulfides and sulfane sulfur in the lumbar spinal cord. Targeted delivery of sulfane sulfur by polysulfides may prove to be a novel approach to the treatment of neurodegenerative diseases.


Asunto(s)
Isquemia de la Médula Espinal , Ratones , Masculino , Femenino , Animales , Administración Intranasal , Disulfuro de Glutatión , Ratones Endogámicos C57BL , Isquemia de la Médula Espinal/tratamiento farmacológico , Isquemia de la Médula Espinal/complicaciones , Azufre , Paraplejía/tratamiento farmacológico , Paraplejía/etiología , Paraplejía/prevención & control
15.
Antioxidants (Basel) ; 11(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36358494

RESUMEN

Peripheral neuropathy is a dose-limiting side effect of chemotherapy with paclitaxel. Paclitaxel-induced peripheral neuropathy (PIPN) is typically characterized by a predominantly sensory neuropathy presenting with allodynia, hyperalgesia and spontaneous pain. Oxidative mitochondrial damage in peripheral sensory neurons is implicated in the pathogenesis of PIPN. Reactive sulfur species, including persulfides (RSSH) and polysulfides (RSnH), are strong nucleophilic and electrophilic compounds that exert antioxidant effects and protect mitochondria. Here, we examined the potential neuroprotective effects of glutathione trisulfide (GSSSG) in a mouse model of PIPN. Intraperitoneal administration of paclitaxel at 4 mg/kg/day for 4 days induced mechanical allodynia and thermal hyperalgesia in mice. Oral administration of GSSSG at 50 mg/kg/day for 28 days ameliorated mechanical allodynia, but not thermal hyperalgesia. Two hours after oral administration, 34S-labeled GSSSG was detected in lumber dorsal root ganglia (DRG) and in the lumber spinal cord. In mice treated with paclitaxel, GSSSG upregulated expression of genes encoding antioxidant proteins in lumber DRG, prevented loss of unmyelinated axons and inhibited degeneration of mitochondria in the sciatic nerve. In cultured primary neurons from cortex and DRG, GSSSG mitigated paclitaxel-induced superoxide production, loss of axonal mitochondria, and axonal degeneration. These results indicate that oral administration of GSSSG mitigates PIPN by preventing axonal degeneration and mitochondria damage in peripheral sensory nerves. The findings suggest that administration of GSSSG may be an approach to the treatment or prevention of PIPN and other peripheral neuropathies.

16.
Arch Toxicol ; 96(12): 3363-3371, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36195745

RESUMEN

Electronic cigarettes (e-cigarettes) have been used widely as an alternative to conventional cigarettes and have become particularly popular among young adults. A growing body of evidence has shown that e-cigarettes are associated with acute lung injury and adverse effects in multiple other organs. Previous studies showed that high emissions of aldehydes (formaldehyde and acetaldehyde) in aerosols were associated with increased usage of the same e-cigarette coils. However, the impact on lung function of using aged coils has not been reported. We investigated the relationship between coil age and acute lung injury in mice exposed to experimental vaping for 1 h (2 puffs/min, 100 ml/puff). The e-liquid contains propylene glycol and vegetable glycerin (50:50, vol) only. The concentrations of formaldehyde and acetaldehyde in the vaping aerosols increased with age of the nichrome coils starting at 1200 puffs. Mice exposed to e-cigarette aerosols produced from 1800, but not 0 or 900, puff-aged coils caused acute lung injury, increased lung wet/dry weight ratio, and induced lung inflammation (IL-6, TNF-α, IL-1ß, MIP-2). Exposure to vaping aerosols from 1800 puff-aged coils decreased heart rate, respiratory rate, and oxygen saturation in mice compared to mice exposed to air or aerosols from new coils. In conclusion, we observed that the concentration of aldehydes (formaldehyde and acetaldehyde) increased with repeated and prolonged usage of e-cigarette coils. Exposure to high levels of aldehyde in vaping aerosol was associated with acute lung injury in mice. These findings show significant risk of lung injury associated with prolonged use of e-cigarette devices.


Asunto(s)
Lesión Pulmonar Aguda , Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Animales , Ratones , Acetaldehído , Lesión Pulmonar Aguda/inducido químicamente , Aldehídos/toxicidad , Formaldehído/toxicidad , Glicerol , Interleucina-6 , Propilenglicol/toxicidad , Aerosoles y Gotitas Respiratorias , Factor de Necrosis Tumoral alfa
17.
Cancer Res ; 82(23): 4474-4484, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36169924

RESUMEN

Surgery is the only potentially curative treatment for localized soft-tissue sarcomas. However, for sarcomas arising in the retroperitoneum, locoregional recurrence rates are 35% to 59% despite resection. Doxorubicin (DOX) is the standard first-line systemic chemotherapy for advanced soft-tissue sarcoma, yet its intravenous administration yields limited clinical efficacy and results in dose-limiting cardiotoxicity. We report the fabrication and optimization of a novel electrospun poly(caprolactone) (PCL) surgical mesh coated with layers of a hydrophobic polymer (poly(glycerol monostearate-co-caprolactone), PGC-C18), which delivers DOX directly to the operative bed following sarcoma resection. In xenograft models of liposarcoma and chondrosarcoma, DOX-loaded meshes (DoM) increased overall survival 4-fold compared with systemically administered DOX and prevented local recurrence in all but one animal. Importantly, mice implanted with DoMs exhibited preserved cardiac function, whereas mice receiving an equivalent dose systemically displayed a 23% decrease from baseline in both cardiac output and ejection fraction 20 days after administration. Collectively, this work demonstrates a feasible therapeutic approach to simultaneously prevent post-surgical tumor recurrence and minimize cardiotoxicity in soft-tissue sarcoma. SIGNIFICANCE: A proof-of-principle study in animal models shows that a novel local drug delivery approach can prevent tumor recurrence as well as drug-related adverse events following surgical resection of soft-tissue sarcomas.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Ratones , Animales , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Recurrencia Local de Neoplasia/prevención & control , Doxorrubicina , Polímeros/química , Sarcoma/tratamiento farmacológico , Sarcoma/cirugía , Neoplasias de los Tejidos Blandos/patología
18.
Anesthesiology ; 137(6): 716-732, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170545

RESUMEN

BACKGROUND: Patients resuscitated from cardiac arrest are routinely sedated during targeted temperature management, while the effects of sedation on cerebral physiology and outcomes after cardiac arrest remain to be determined. The authors hypothesized that sedation would improve survival and neurologic outcomes in mice after cardiac arrest. METHODS: Adult C57BL/6J mice of both sexes were subjected to potassium chloride-induced cardiac arrest and cardiopulmonary resuscitation. Starting at the return of spontaneous circulation or at 60 min after return of spontaneous circulation, mice received intravenous infusion of propofol at 40 mg · kg-1 · h-1, dexmedetomidine at 1 µg · kg-1 · h-1, or normal saline for 2 h. Body temperature was lowered and maintained at 33°C during sedation. Cerebral blood flow was measured for 4 h postresuscitation. Telemetric electroencephalogram (EEG) was recorded in freely moving mice from 3 days before up to 7 days after cardiac arrest. RESULTS: Sedation with propofol or dexmedetomidine starting at return of spontaneous circulation improved survival in hypothermia-treated mice (propofol [13 of 16, 81%] vs. no sedation [4 of 16, 25%], P = 0.008; dexmedetomidine [14 of 16, 88%] vs. no sedation [4 of 16, 25%], P = 0.002). Mice receiving no sedation exhibited cerebral hyperemia immediately after resuscitation and EEG power remained less than 30% of the baseline in the first 6 h postresuscitation. Administration of propofol or dexmedetomidine starting at return of spontaneous circulation attenuated cerebral hyperemia and increased EEG slow oscillation power during and early after sedation (40 to 80% of the baseline). In contrast, delayed sedation failed to improve outcomes, without attenuating cerebral hyperemia and inducing slow-wave activity. CONCLUSIONS: Early administration of sedation with propofol or dexmedetomidine improved survival and neurologic outcomes in mice resuscitated from cardiac arrest and treated with hypothermia. The beneficial effects of sedation were accompanied by attenuation of the cerebral hyperemic response and enhancement of electroencephalographic slow-wave activity.


Asunto(s)
Reanimación Cardiopulmonar , Dexmedetomidina , Paro Cardíaco , Hiperemia , Hipotermia Inducida , Hipotermia , Propofol , Masculino , Femenino , Animales , Ratones , Propofol/efectos adversos , Dexmedetomidina/efectos adversos , Hiperemia/terapia , Ratones Endogámicos C57BL , Paro Cardíaco/tratamiento farmacológico , Modelos Animales de Enfermedad , Electroencefalografía
19.
Obstet Gynecol ; 140(2): 195-203, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35852269

RESUMEN

OBJECTIVE: To evaluate whether the use of inhaled nitric oxide (iNO)200 improves respiratory function. METHODS: This retrospective cohort study used data from pregnant patients hospitalized with severe bilateral coronavirus disease 2019 (COVID-19) pneumonia at four teaching hospitals between March 2020 and December 2021. Two cohorts were identified: 1) those receiving standard of care alone (SoC cohort) and 2) those receiving iNO200 for 30 minutes twice daily in addition to standard of care alone (iNO200 cohort). Inhaled nitric oxide, as a novel therapy, was offered only at one hospital. The prespecified primary outcome was days free from any oxygen supplementation at 28 days postadmission. Secondary outcomes were hospital length of stay, rate of intubation, and intensive care unit (ICU) length of stay. The multivariable-adjusted regression analyses accounted for age, body mass index, gestational age, use of steroids, remdesivir, and the study center. RESULTS: Seventy-one pregnant patients were hospitalized for severe bilateral COVID-19 pneumonia: 51 in the SoC cohort and 20 in the iNO200 cohort. Patients receiving iNO200 had more oxygen supplementation-free days (iNO200: median [interquartile range], 24 [23-26] days vs standard of care alone: 22 [14-24] days, P=.01) compared with patients in the SoC cohort. In the multivariable-adjusted analyses, iNO200 was associated with 63.2% (95% CI 36.2-95.4%; P<.001) more days free from oxygen supplementation, 59.7% (95% CI 56.0-63.2%; P<.001) shorter ICU length of stay, and 63.6% (95% CI 55.1-70.8%; P<.001) shorter hospital length of stay. No iNO200-related adverse events were reported. CONCLUSION: In pregnant patients with severe bilateral COVID-19 pneumonia, iNO200 was associated with a reduced need for oxygen supplementation and shorter hospital stay.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Femenino , Humanos , Óxido Nítrico , Oxígeno , Embarazo , Estudios Retrospectivos , SARS-CoV-2
20.
Nitric Oxide ; 125-126: 47-56, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716999

RESUMEN

RATIONALE: Nitric oxide (NO) exerts its biological effects primarily via activation of guanylate cyclase (GC) and production of cyclic guanosine monophosphate. Inhaled NO improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CPR). However, mechanisms of the protective effects of breathing NO after cardiac arrest are incompletely understood. OBJECTIVE: To elucidate the mechanisms of beneficial effects of inhaled NO on outcomes after cardiac arrest. METHODS: Adult male C57BL/6J wild-type (WT) mice, GC-1 knockout mice, and chimeric WT mice with WT or GC-1 knockout bone marrow were subjected to 8 min of potassium-induced cardiac arrest to determine the role of GC-1 in bone marrow-derived cells. Mice breathed air or 40 parts per million NO for 23 h starting at 1 h after CPR. RESULTS: Breathing NO after CPR prevented hypercoagulability, cerebral microvascular occlusion, an increase in circulating polymorphonuclear neutrophils and neutrophil-to-lymphocyte ratio, and right ventricular dysfunction in WT mice, but not in GC-1 knockout mice, after cardiac arrest. The lack of GC-1 in bone marrow-derived cells diminished the beneficial effects of NO breathing after CPR. CONCLUSIONS: GC-dependent signaling in bone marrow-derived cells is essential for the beneficial effects of inhaled NO after cardiac arrest and CPR.


Asunto(s)
Paro Cardíaco , Óxido Nítrico , Animales , Médula Ósea , Guanilato Ciclasa , Paro Cardíaco/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/farmacología , Receptores de Superficie Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...