Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
EJNMMI Radiopharm Chem ; 9(1): 19, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436869

RESUMEN

BACKGROUND: Heat shock proteins (HSPs) are present throughout the brain. They function as molecular chaperones, meaning they help with the folding and unfolding of large protein complexes. These chaperones are vital in the development of neuropathological conditions such as Alzheimer's disease and Lewy body disease, with HSP90, a specific subtype of HSP, playing a key role. Many studies have shown that drugs that inhibit HSP90 activity have beneficial effects in the neurodegenerative diseases. Therefore, HSP90 PET imaging ligand can be used effectively to study HSP90 in neurodegenerative diseases. Among four HSP90 isoforms, two cytosolic isoforms (HSP90α and HSP90ß) thought to be involved in the structural homeostasis of the proteins related to the neurodegenerative diseases. Currently, no useful PET imaging ligands selectively targeting the two cytosolic isoforms of HSP90 have been available yet. RESULTS: In this study, we developed a novel positron emission tomography (PET) imaging ligand, [11C]BIIB021, by 11C-radiolabeling (a positron emitter with a half-life of 20.4 min) 6-Chloro-9-[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]-9H-purin-2-amine (BIIB021), an inhibitor with a high affinity for and selectivity to HSP90α and HSP90ß. [11C]BIIB021 was synthesized with a high yield, molar activity and radiochemical purity. [11C]BIIB021 showed a high binding affinity for rat brain homogenate as well as human recombinant HSP90α and HSP90ß proteins. Radioactivity was well detected in the rat brain (SUV 1.4). It showed clear specific binding in PET imaging of healthy rats and autoradiography of healthy rat and human brain sections. Radiometabolite was detected in the brain, however, total distribution volume was well quantified using dual-input graphical model. Inhibition of p-glycoprotein increased brain radioactivity concentrations. However, total distribution volume values with and without p-glycoprotein inhibition were nearly the same. CONCLUSIONS: We have developed a new PET imaging agent, [11C]BIIB021, specifically targeting HSP90α/ß. We have been successful in synthesizing [11C]BIIB021 and in vitro and in vivo imaging HSP90α/ß. However, the quantification of HSP90α/ß is complicated by the presence of radiometabolites in the brain and the potential to be a substrate for p-glycoprotein. Further efforts are needed to develop radioligand suitable for imaging of HSP90α/ß.

2.
EJNMMI Radiopharm Chem ; 8(1): 31, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853253

RESUMEN

BACKGROUND: Receptor interacting protein kinase 1 (RIPK1) is a serine/threonine kinase, which regulates programmed cell death and inflammation. Recently, the involvement of RIPK1 in the pathophysiology of Alzheimer's disease (AD) has been reported; RIPK1 is involved in microglia's phenotypic transition to their dysfunctional states, and it is highly expressed in the neurons and microglia in the postmortem brains in AD patients. They prompt neurodegeneration leading to accumulations of pathological proteins in AD. Therefore, regulation of RIPK1 could be a potential therapeutic target for the treatment of AD, and in vivo imaging of RIPK1 may become a useful modality in studies of drug discovery and pathophysiology of AD. The purpose of this study was to develop a suitable radioligand for positron emission tomography (PET) imaging of RIPK1. RESULTS: (S)-2,2-dimethyl-1-(5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one (GSK'963) has a high affinity, selectivity for RIPK1, and favorable physiochemical properties based on its chemical structure. In this study, since 11C-labeling (half-life: 20.4 min) GSK'963 retaining its structure requiring the Grignard reaction of tert-butylmagnesium halides and [11C]carbon dioxide was anticipated to give a low yield, we decided instead to 11C-label a GSK'963 analog ((S)-2,2-dimethyl-1-(5-(m-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one, GG502), which has a high RIPK1 inhibitory activity equivalent to that of the original compound GSK'963. Thus, we successfully 11C-labeled GG502 using a Pd-mediated cross-coupling reaction in favorable yields (3.6 ± 1.9%) and radiochemical purities (> 96%), and molar activity (47-115 GBq/µmol). On autoradiography, radioactivity accumulation was observed for [11C]GG502 and decreased by non-radioactive GG502 in the mouse spleen and human brain, indicating the possibility of specific binding of this ligand to RIPK1. On brain PET imaging in a rhesus monkey, [11C]GG502 showed a good brain permeability (peak standardized uptake value (SUV) ~3.0), although there was no clear evidence of specific binding of [11C]GG502. On brain PET imaging in acute inflammation model rats, [11C]GG502 also showed a good brain permeability, and no significant increased uptake was observed in the lipopolysaccharide-treated side of striatum. On metabolite analysis in rats at 30 min after administration of [11C]GG502, ~55% and ~10% of radioactivity was from unmetabolized [11C]GG502 in the brain and the plasma, respectively. CONCLUSIONS: We synthesized and evaluated a 11C-labeled PET ligand based on the methylated analog of GSK'963 for imaging of RIPK1 in the brain. Although in autoradiography of the resulting [11C]GG502 indicated the possibility of specific binding, the actual PET imaging failed to detect any evidence of specific binding to RIPK1 despite its good brain permeability. Further development of radioligands with a higher binding affinity for RIPK1 in vivo and more stable metabolite profiles compared with the current compound may be required.

3.
EJNMMI Res ; 13(1): 82, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713137

RESUMEN

BACKGROUND: The neuropathological changes of early Alzheimer's disease (AD) include neurodegenerative loss of noradrenaline neurons in the locus coeruleus with decreasing noradrenaline availability in their projection areas such as the hippocampus. This diminishing noradrenaline availability is thought to play an important role pathophysiologically in the development of cognitive impairment in AD, because noradrenaline is not only essential for maintaining cognitive functions such as memory, learning and attention, but also its anti-inflammatory action, where its lack is known to accelerate the progression of AD in the mouse model. Therefore, the availability of in vivo biomarkers of the integrity of noradrenaline neurons may be beneficial for furthering our understanding of the role played by the noradrenaline system in the progressive cognitive dysfunction seen in AD patients. In this study, we investigated if PET imaging of noradrenaline transporters can predict the level of noradrenaline in the brain. Our hypothesis was PET measured noradrenaline transporter densities could predict the level of noradrenaline concentrations in the rat hippocampus after lesioning of noradrenaline neurons in this region. RESULTS: We chemically lesioned the hippocampus of rats (n = 15) by administering a neurotoxin, DSP-4, in order to selectively damage axonal terminals of noradrenergic neurons. These rats then underwent PET imaging of noradrenaline transporters using [11C]MRB ((S,S)-[11C]Methylreboxetine). To validate our hypothesis, postmortem studies of brain homogenates of these rats were performed to measure both noradrenaline transporter and noradrenaline concentrations. [11C]MRB PET showed decreased noradrenaline transporter densities in a DSP-4 dose-dependent manner in the hippocampus of these rats. In turn, these PET measured noradrenaline transporter densities correlated very well with in vitro measured noradrenaline concentrations as well as in vitro transporter densities. CONCLUSIONS: [11C]MRB PET may be used as an in vivo biomarker of noradrenaline concentrations in the hippocampus of the neurodegenerating brain. Further studies appear warranted to extend its applicability to AD studies.

4.
Bioorg Med Chem Lett ; 90: 129327, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187253

RESUMEN

Positron emission tomography (PET) is a powerful imaging tool that enables early in vivo detection of Alzheimer's disease (AD). For this purpose, various PET ligands have been developed to image ß-amyloid and tau protein aggregates characteristically found in the brain of AD patients. In this study, we initiated to develop another type of PET ligand that targets protein kinase CK2 (formerly termed as casein kinase II), because its expression level is known to be altered in postmortem AD brains. CK2 is a serine/threonine protein kinase, an important component of cellular signaling pathways that control cellular degeneration. In AD, the CK2 level in the brain is thought to be elevated by its involvement in both phosphorylation of proteins such as tau and neuroinflammation. Decreased CK2 activity and expression levels lead to ß-amyloid accumulation. In addition, since CK2 also contributes to the phosphorylation of tau protein, the expression level and activity of CK2 is expected to undergo significant changes during the progression of AD pathology. Furthermore, CK2 could act as a potential target for modulating the inflammatory response in AD. Therefore, PET imaging targeting CK2 expressed in the brain could be a useful another imaging biomarker for AD. We synthesized and radiolabeled a CK2 inhibitor, [11C]GO289, in high yields from its precursor and [11C]methyl iodide under basic conditions. On autoradiography, [11C]GO289 specifically bound to CK2 in both rat and human brain sections. On baseline PET imaging, this ligand entered and rapidly washed out of the rat brain with its peak activity rather being small (SUV < 1.0). However, on blocking, there was no detectable CK2 specific binding signal. Thus, [11C]GO289 may be useful in vitro but not so in vivo in its current formulation. The lack of detectable specific binding signal in the latter may be due to a relatively high component of nonspecific binding signal in the overall rather weak PET signal, or it may also be related to the known fact that ATP can competitively binds to subunits of CK2, reducing its availability for this ligand. In the future, it will be necessary for PET imaging of CK2 to try out different non-ATP competitive formulations of CK2 inhibitor that can also provide significantly higher in vivo brain penetration.


Asunto(s)
Enfermedad de Alzheimer , Quinasa de la Caseína II , Humanos , Ratas , Animales , Ligandos , Tomografía de Emisión de Positrones/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo
5.
Bioorg Med Chem Lett ; 85: 129212, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871703

RESUMEN

Recently, retinoid actions on the central nervous system (CNS) have attracted considerable attention from the perspectives of brain disease diagnosis and drug development. Firstly, we successfully synthesized [11C]peretinoin esters (methyl, ethyl, and benzyl) using a Pd(0)-mediated rapid C-[11C]methylation of the corresponding stannyl precursors without geometrical isomerization in 82%, 66%, and 57% radiochemical yields (RCYs). Subsequent hydrolysis of the 11C-labeled ester produced [11C]peretinoin in 13 ± 8% RCY (n = 3). After pharmaceutical formulation, the resulting [11C]benzyl ester and [11C]peretinoin had high radiochemical purity (>99% each) and molar activities of 144 and 118 ± 49 GBq µmol-1 at total synthesis times of 31 min and 40 ± 3 min, respectively. Rat brain PET imaging for the [11C]ester revealed a unique time-radioactivity curve, suggesting the participation of the acid [11C]peretinoin for the brain permeability. However, the curve of the [11C]peretinoin rose steadily after a shorter time lag to reach 1.4 standardized uptake value (SUV) at 60 min. These various phenomena between the ester and acid became more pronounced in the monkey brain (SUV of > 3.0 at 90 min). With the opportunity to identify high brain uptake of [11C]peretinoin, we discovered CNS activities of a drug candidate called peretinoin, such as the induction of a stem-cell to neuronal cell differentiation and the suppression of neuronal damages.


Asunto(s)
Antineoplásicos , Retinoides , Ratas , Animales , Metilación , Retinoides/farmacología , Antineoplásicos/farmacología , Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones , Radiofármacos/farmacología
6.
J Nucl Med ; 64(3): 444-451, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36175137

RESUMEN

In vivo characterization of pathologic deposition of tau protein in the human brain by PET imaging is a promising tool in drug development trials of Alzheimer disease (AD). 6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine (18F-MK-6240) is a radiotracer with high selectivity and subnanomolar affinity for neurofibrillary tangles that shows favorable nonspecific brain penetration and excellent kinetic properties. The purpose of the present investigation was to develop a visual assessment method that provides both an overall assessment of brain tauopathy and regional characterization of abnormal tau deposition. Methods: 18F-MK-6240 scans from 102 participants (including cognitively normal volunteers and patients with AD or other neurodegenerative disorders) were reviewed by an expert nuclear medicine physician masked to each participant's diagnosis to identify common patterns of brain uptake. This initial visual read method was field-tested in a separate, nonoverlapping cohort of 102 participants, with 2 additional naïve readers trained on the method. Visual read outcomes were compared with semiquantitative assessments using volume-of-interest SUV ratio. Results: For the visual read, the readers assessed 8 gray-matter regions per hemisphere as negative (no abnormal uptake) or positive (1%-25% of the region involved, 25%-75% involvement, or >75% involvement) and then characterized the tau binding pattern as positive or negative for evidence of tau and, if positive, whether brain uptake was in an AD pattern. The readers demonstrated agreement 94% of the time for overall positivity or negativity. Concordance on the determination of regional binary outcomes (negative or positive) showed agreement of 74.3% and a Fleiss κ of 0.912. Using clinical diagnosis as the ground truth, the readers demonstrated a sensitivity of 73%-79% and specificity of 91%-93%, with a combined reader-concordance sensitivity of 80% and specificity of 93%. The average SUV ratio in cortical regions showed a robust correlation with visually derived ratings of regional involvement (r = 0.73, P < 0.0001). Conclusion: We developed a visual read algorithm for 18F-MK-6240 PET offering determination of both scan positivity and the regional degree of cortical involvement. These cross-sectional results show strong interreader concordance on both binary and regional assessments of tau deposition, as well as good sensitivity and excellent specificity supporting use as a tool for clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Humanos , Estudios Transversales , Encéfalo/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones/métodos
7.
Parkinsonism Relat Disord ; 98: 92-98, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533530

RESUMEN

INTRODUCTION: Corticobasal degeneration (CBD) is the most common neuropathological substrate for clinically diagnosed corticobasal syndrome (CBS), while identifying CBD pathology in living individuals has been challenging. This study aimed to examine the capability of positron emission tomography (PET) to detect CBD-type tau depositions and neuropathological classification of CBS. METHODS: Sixteen CBS cases diagnosed by Cambridge's criteria and 12 cognitively healthy controls (HCs) underwent PET scans with 11C-PiB, 11C-PBB3, and 18F-FDG, along with T1-weighted magnetic resonance imaging. Amyloid positivity was assessed by visual inspection of 11C-PiB retentions. Tau positivity was judged by quantitative comparisons of 11C-PBB3 binding to HCs. RESULTS: Sixteen CBS cases consisted of two cases (13%) with amyloid and tau positivities indicative of Alzheimer's disease (AD) pathologies, 11 cases (69%) with amyloid negativity and tau positivity, and three cases (19%) with amyloid and tau negativities. Amyloid(-), tau(+) CBS cases showed increased retentions of 11C-PBB3 in the frontoparietal areas, basal ganglia, and midbrain, and reduced metabolism in the precentral gyrus and thalamus relative to HCs. The enhanced tau probe retentions in the frontal gray and white matters partially overlapped with metabolic deficits and atrophy and correlated with Clinical Dementia Rating scores. CONCLUSIONS: PET-based classification of CBS was in accordance with previous neuropathological reports on the prevalences of AD, non-AD tauopathies, and others in CBS. The current work suggests that 11C-PBB3-PET may assist the biological classification of CBS and understanding of links between CBD-type tau depositions and neuronal deteriorations leading to cognitive declines.


Asunto(s)
Enfermedad de Alzheimer , Degeneración Corticobasal , Enfermedad de Alzheimer/metabolismo , Fluorodesoxiglucosa F18 , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
9.
Bioorg Med Chem Lett ; 65: 128704, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35351586

RESUMEN

Colony-stimulating factor 1 receptors (CSF1R) are expressed exclusively on microglia in the central nervous system. The receptors regulate immune responses by controlling the survival and activity of microglia and are intricately involved in the pathophysiology of Alzheimer's disease. In this study, we developed [11C]NCGG401, a positron emission tomography (PET) ligand, targeting for CSF1R as an imaging biomarker for microglial pathophysiology in Alzheimer's disease. NCGG401 showed a high potency to inhibit human CSF1R kinase activity and a high binding affinity to human CSF1R. PET imaging with [11C]NCGG401 in healthy rats showed a good brain permeability. Furthermore, the specific binding component was determined by postmortem autoradiography in rat brain and human hippocampal sections. The knowledge of the characteristics of [11C]NCCC401, our initial CSF1R compound, we have obtained may be useful for further development and optimization of CSF1R radioligands for PET imaging of microglia.


Asunto(s)
Enfermedad de Alzheimer , Factor Estimulante de Colonias de Macrófagos , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ligandos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Microglía/metabolismo , Tomografía de Emisión de Positrones/métodos , Ratas , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos
10.
Nucl Med Biol ; 108-109: 76-84, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35349913

RESUMEN

INTRODUCTION: 11C-DPA-713 is a positron emission tomography (PET) radiotracer developed for imaging the expression of the translocator protein (TSPO) in glial cells, which is considered to be a marker of the neuroinflammatory burden. This study investigated the pharmacokinetic profile of 11C-DPA-713 and evaluated kinetic modeling and non-invasive TSPO quantification using dynamic PET imaging data in the Alzheimer's disease (AD) and cognitive normal (CN) participants. METHODS: Eleven patients with AD and 6 CN participants were examined using dynamic 11C-DPA-713 PET imaging for 60 min with arterial blood sampling. Time-activity curves were calculated from the cerebellum and three composite regions of interest (ROIs), according to the anatomical definitions of Braak's stages 1 to 3, stage 4, stage 5, and stage 6 that correspond to the pathological stages of tangle deposition. The total distribution volume (VT) was evaluated using compartmental modeling and graphical analysis. Reference region-based methods were implemented using an optimal area that was assumed to be void of the radiotracer target as reference tissue. RESULTS: The concentration of radioactivity in plasma demonstrated rapid clearance. 11C-DPA-713 peaked rapidly in the gray matter. Compartmental modeling resulted in a good fit, and the one-tissue model with estimated blood volume correction (1Tv) showed the best performance. The estimated VT obtained from the graphical plasma methods was highly correlated with that obtained from 1Tv. Reference region-based analysis was conducted using the Braak 6 area as the reference region, and the estimated non-displaceable binding potential was highly correlated with that obtained from 1Tv. CONCLUSION: 11C-DPA-713 possesses properties suitable for TSPO quantification with PET imaging. The Braak 6 area was shown to be a useful reference region in the patients with AD and the CN participants, and non-invasive reference tissue models using the Braak 6 area as a reference region can be employed for TSPO quantification with 11C-DPA-713-PET imaging as an alternative to the invasive compartmental model.


Asunto(s)
Enfermedad de Alzheimer , Pirazoles , Acetamidas/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Tomografía de Emisión de Positrones/métodos , Pirazoles/química , Pirimidinas/química , Receptores de GABA/metabolismo
11.
Eur J Nucl Med Mol Imaging ; 49(9): 3150-3161, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35022846

RESUMEN

PURPOSE: Monoacylglycerol lipase (MAGL) regulates cannabinoid neurotransmission and the pro-inflammatory arachidonic acid pathway by degrading endocannabinoids. MAGL inhibitors may accordingly act as cannabinoid-potentiating and anti-inflammatory agents. Although MAGL dysfunction has been implicated in neuropsychiatric disorders, it has never been visualized in vivo in human brain. The primary objective of the current study was to visualize MAGL in the human brain using the novel PET ligand 18F-T-401. METHODS: Seven healthy males underwent 120-min dynamic 18F-T-401-PET scans with arterial blood sampling. Six subjects also underwent a second PET scan with 18F-T-401 within 2 weeks of the first scan. For quantification of MAGL in the human brain, kinetic analyses using one- and two-tissue compartment models (1TCM and 2TCM, respectively), along with multilinear analysis (MA1) and Logan graphical analysis, were performed. Time-stability and test-retest reproducibility of 18F-T-401-PET were also evaluated. RESULTS: 18F-T-401 showed rapid uptake and gradual washout from the brain. Logan graphical analysis showed linearity in all subjects, indicating reversible radioligand kinetics. Using a metabolite-corrected arterial input function, MA1 estimated regional total distribution volume (VT) values by best identifiability. VT values were highest in the cerebral cortex, moderate in the thalamus and putamen, and lowest in white matter and the brainstem, which was in agreement with regional MAGL expression in the human brain. Time-stability analysis showed that MA1 estimated VT values with a minimal bias even using truncated 60-min scan data. Test-retest reliability was also excellent with the use of MA1. CONCLUSIONS: Here, we provide the first demonstration of in vivo visualization of MAGL in the human brain. 18F-T-401 showed excellent test-retest reliability, reversible kinetics, and stable estimation of VT values consistent with known regional MAGL expressions. PET with 18F-T-401-PET is promising tool for measurement of central MAGL.


Asunto(s)
Cannabinoides , Monoacilglicerol Lipasas , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cannabinoides/metabolismo , Humanos , Masculino , Monoacilglicerol Lipasas/metabolismo , Tomografía de Emisión de Positrones/métodos , Reproducibilidad de los Resultados , Distribución Tisular
12.
Eur J Nucl Med Mol Imaging ; 49(4): 1127-1135, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34651222

RESUMEN

PURPOSE: Histamine H3 receptor antagonists and inverse agonists have been extensively developed to treat sleep-wake, neurocognitive, and allied disorders. However, potential adverse effects, including insomnia, hampered the clinical use of these drugs, possibly due to their persistent interaction with the target molecules. The purpose of the present study was to estimate the pharmacokinetics and pharmacodynamics of enerisant, a novel antagonist and inverse agonist for histamine H3 receptors. METHODS: To measure the histamine H3 receptor occupancy by enerisant, positron emission tomography studies using [11C]TASP457, a specific radioligand for histamine H3 receptors, were performed in 12 healthy men at baseline and at 2 h after oral administration of enerisant hydrochloride. For three of these subjects, two additional scans were performed at 6 and 26 h after the administration. Relationships between the receptor occupancy by enerisant and its dose and plasma concentrations were then analyzed. RESULTS: Administration of enerisant hydrochloride decreased the radioligand binding in a dose-dependent manner. The estimated receptor occupancy values at 2 h varied as a function of its dose or plasma concentration. The time course of the occupancy showed persistently high levels (> 85%) in the two subjects with higher doses (25 and 12.5 mg). The occupancy was also initially high at 2 h and 6 h with the lower dose of 5 mg, but it decreased to 69.7% at 26 h. CONCLUSION: The target engagement of enerisant was demonstrated in the brains of living human subjects. The occupancy of histamine H3 receptors by enerisant at 2 h can be predicted by applying the plasma concentration of enerisant to Hill's plot. The preliminary time-course investigation showed persistently high brain occupancy with high doses of enerisant despite the decreasing plasma concentration of the drug. Five milligrams or less dose would be appropriate for the treatment for narcolepsy with initially high occupancy allowing for effective treatment of narcolepsy, and then the occupancy level would be expected to decrease to a level to avoid this drug's unwanted side effect of insomnia at night, although further research is warranted to confirm the statement since the expected decrease is based on the finding in one subject. TRIAL REGISTRATION: This study was retrospectively registered with ClinicalTrials.gov (NCT04631276) on November 17, 2020.


Asunto(s)
Narcolepsia , Fármacos Neuroprotectores , Receptores Histamínicos H3 , Trastornos del Inicio y del Mantenimiento del Sueño , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Histamina/metabolismo , Humanos , Ligandos , Masculino , Narcolepsia/metabolismo , Niacinamida , Tomografía de Emisión de Positrones/métodos , Piridinas , Quinolonas , Receptores Histamínicos H3/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo
13.
J Cereb Blood Flow Metab ; 41(11): 2928-2943, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34039039

RESUMEN

Fluctuations of neuronal activities in the brain may underlie relatively slow components of neurofunctional alterations, which can be modulated by food intake and related systemic metabolic statuses. Glutamatergic neurotransmission plays a major role in the regulation of excitatory tones in the central nervous system, although just how dietary elements contribute to the tuning of this system remains elusive. Here, we provide the first demonstration by bimodal positron emission tomography (PET) and magnetic resonance spectroscopy (MRS) that metabotropic glutamate receptor subtype 5 (mGluR5) ligand binding and glutamate levels in human brains are dynamically altered in a manner dependent on food intake and consequent changes in plasma glucose levels. The brain-wide modulations of central mGluR5 ligand binding and glutamate levels and profound neuronal activations following systemic glucose administration were further proven by PET, MRS, and intravital two-photon microscopy, respectively, in living rodents. The present findings consistently support the notion that food-associated glucose intake is mechanistically linked to glutamatergic tones in the brain, which are translationally accessible in vivo by bimodal PET and MRS measurements in both clinical and non-clinical settings.


Asunto(s)
Encéfalo/diagnóstico por imagen , Ingestión de Alimentos/fisiología , Glucosa/administración & dosificación , Ácido Glutámico/metabolismo , Imagen Multimodal/métodos , Adulto , Animales , Glucemia/análisis , Encéfalo/metabolismo , Sistema Nervioso Central/fisiología , Glucosa/metabolismo , Humanos , Cinética , Espectroscopía de Resonancia Magnética/métodos , Masculino , Modelos Animales , Tomografía de Emisión de Positrones/métodos , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/metabolismo , Transmisión Sináptica/fisiología
14.
Eur J Nucl Med Mol Imaging ; 48(9): 2846-2855, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33566152

RESUMEN

PURPOSE: Phosphodiesterase 7 (PDE7) is an enzyme that selectively hydrolyses cyclic adenosine monophosphate, and its dysfunction is implicated in neuropsychiatric diseases. However, in vivo visualization of PDE7 in human brains has hitherto not been possible. Using the novel PET ligand 11C-MTP38, which we recently developed, we aimed to image and quantify PDE7 in living human brains. METHODS: Seven healthy males underwent a 90-min PET scan after injection of 11C-MTP38. We performed arterial blood sampling and metabolite analysis of plasma in six subjects to obtain a metabolite-corrected input function. Regional total distribution volumes (VTs) were estimated using compartment models, and Logan plot and Ichise multilinear analysis (MA1). We further quantified the specific radioligand binding using the original multilinear reference tissue model (MRTMO) and standardized uptake value ratio (SUVR) method with the cerebellar cortex as reference. RESULTS: PET images with 11C-MTP38 showed relatively high retentions in several brain regions, including in the striatum, globus pallidus, and thalamus, as well as fast washout from the cerebellar cortex, in agreement with the known distribution of PDE7. VT values were robustly estimated by two-tissue compartment model analysis (mean VT = 4.2 for the pallidum), Logan plot, and MA1, all in excellent agreement with each other, suggesting the reversibility of 11C-MTP38 binding. Furthermore, there were good agreements between binding values estimated by indirect method and those estimated by both MRTMO and SUVR, indicating that these methods could be useful for reliable quantification of PDE7. Because MRTMO and SUVR do not require arterial blood sampling, they are the most practical for the clinical use of 11C-MTP38-PET. CONCLUSION: We have provided the first demonstration of PET visualization of PDE7 in human brains. 11C-MTP38 is a promising novel PET ligand for the quantitative investigation of central PDE7.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 7 , Tomografía de Emisión de Positrones , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Ligandos , Masculino , Radiofármacos
15.
Neuron ; 109(1): 42-58.e8, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33125873

RESUMEN

A panel of radiochemicals has enabled in vivo positron emission tomography (PET) of tau pathologies in Alzheimer's disease (AD), although sensitive detection of frontotemporal lobar degeneration (FTLD) tau inclusions has been unsuccessful. Here, we generated an imaging probe, PM-PBB3, for capturing diverse tau deposits. In vitro assays demonstrated the reactivity of this compound with tau pathologies in AD and FTLD. We could also utilize PM-PBB3 for optical/PET imaging of a living murine tauopathy model. A subsequent clinical PET study revealed increased binding of 18F-PM-PBB3 in diseased patients, reflecting cortical-dominant AD and subcortical-dominant progressive supranuclear palsy (PSP) tau topologies. Notably, the in vivo reactivity of 18F-PM-PBB3 with FTLD tau inclusion was strongly supported by neuropathological examinations of brains derived from Pick's disease, PSP, and corticobasal degeneration patients who underwent PET scans. Finally, visual inspection of 18F-PM-PBB3-PET images was indicated to facilitate individually based identification of diverse clinical phenotypes of FTLD on a neuropathological basis.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Benzotiazoles/metabolismo , Radioisótopos de Carbono/metabolismo , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Anciano , Enfermedad de Alzheimer/genética , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Tauopatías/genética
16.
Nucl Med Biol ; 86-87: 52-58, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32532591

RESUMEN

INTRODUCTION: Isoproterenol is a non-selective ß receptor agonist, which is a drug approved for bradycardia and bronchial asthma in many countries. Recently, isoproterenol has been reported to have the potential as a drug for the treatment of Alzheimer's disease by inhibiting the aggregation of tau protein. Isoproterenol is a highly potent drug causing increases in heart rates even when its plasma concentration is very low. Thus, it is critical to know if potentially effective therapeutic levels of isoproterenol can be achieved, maintaining safe plasma levels without any untoward pharmacological effects. The purpose of the study is to investigate the brain pharmacokinetics and biodistribution of 11C-labeled isoproterenol in rodents. METHODS: We performed positron emission tomography (PET) brain imaging and biodistribution studies of [11C]isoproterenol. 120-min scans with arterial blood sampling were performed in rats. Additionally, plasma and brain homogenates were analyzed with radio-HPLC to characterize its metabolite profiles. As a measure of [11C]isoproterenol brain uptake, total distribution volumes were determined by a pharmacokinetic compartment model. Biodistribution of [11C]isoproterenol was investigated in mice at six-time points from 1-min to 90-min after injection. RESULTS: We found a modest brain uptake of [11C]isoproterenol. Its brain pharmacokinetics showed that the concentration of isoproterenol in the brain at equilibrium was about two-fold higher than in the plasma (total distribution volumes 2.0 ± 0.2 cm3/mL). Only unmetabolized isoproterenol was detected in the brain at 30 min after injection, although isoproterenol was rapidly metabolized in plasma. The biodistribution study showed that isoproterenol and its metabolite are excreted mainly via the urinary system. CONCLUSIONS, ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: In this study, we have shown that rat brain concentrations of isoproterenol are only two-fold of that in plasma at equilibrium. If the brain pharmacokinetics are similar in the human brain, it may be difficult to achieve potentially therapeutic levels of this drug safely in humans. Further studies appear warranted to investigate the brain pharmacokinetics in humans with PET using [11C]isoproterenol.


Asunto(s)
Encéfalo/metabolismo , Radioisótopos de Carbono/química , Isoproterenol/química , Isoproterenol/farmacocinética , Animales , Encéfalo/diagnóstico por imagen , Marcaje Isotópico , Masculino , Tomografía de Emisión de Positrones , Radioquímica , Ratas , Ratas Sprague-Dawley , Distribución Tisular
17.
Brain ; 142(10): 3265-3279, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504227

RESUMEN

Tau deposits is a core feature of neurodegenerative disorder following traumatic brain injury (TBI). Despite ample evidence from post-mortem studies demonstrating exposure to both mild-repetitive and severe TBIs are linked to tau depositions, associations of topology of tau lesions with late-onset psychiatric symptoms due to TBI have not been explored. To address this issue, we assessed tau deposits in long-term survivors of TBI by PET with 11C-PBB3, and evaluated those associations with late-life neuropsychiatric outcomes. PET data were acquired from 27 subjects in the chronic stage following mild-repetitive or severe TBI and 15 healthy control subjects. Among the TBI patients, 14 were diagnosed as having late-onset symptoms based on the criteria of traumatic encephalopathy syndrome. For quantification of tau burden in TBI brains, we calculated 11C-PBB3 binding capacity (cm3), which is a summed voxel value of binding potentials (BP*ND) multiplied by voxel volume. Main outcomes of the present study were differences in 11C-PBB3 binding capacity between groups, and the association of regional 11C-PBB3 binding capacity with neuropsychiatric symptoms. To confirm 11C-PBB3 binding to tau deposits in TBI brains, we conducted in vitro PBB3 fluorescence and phospho-tau antibody immunofluorescence labelling of brain sections of chronic traumatic encephalopathy obtained from the Brain Bank. Our results showed that patients with TBI had higher 11C-PBB3 binding capacities in the neocortical grey and white matter segments than healthy control subjects. Furthermore, TBI patients with traumatic encephalopathy syndrome showed higher 11C-PBB3 binding capacity in the white matter segment than those without traumatic encephalopathy syndrome, and regional assessments revealed that subgroup difference was also significant in the frontal white matter. 11C-PBB3 binding capacity in the white matter segment correlated with the severity of psychosis. In vitro assays demonstrated PBB3-positive tau inclusions at the depth of neocortical sulci, confirming 11C-PBB3 binding to tau lesions. In conclusion, increased 11C-PBB3 binding capacity is associated with late-onset neuropsychiatric symptoms following TBI, and a close correlation was found between psychosis and 11C-PBB3 binding capacity in the white matter.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Tauopatías/diagnóstico por imagen , Adulto , Enfermedad de Alzheimer/patología , Encéfalo/patología , Encefalopatía Traumática Crónica/patología , Femenino , Humanos , Masculino , Trastornos Mentales/etiología , Trastornos Mentales/metabolismo , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Trastornos Psicóticos/etiología , Trastornos Psicóticos/patología , Tauopatías/metabolismo , Sustancia Blanca/patología , Proteínas tau/metabolismo
18.
Mov Disord ; 34(5): 744-754, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30892739

RESUMEN

BACKGROUND: [11 C]pyridinyl-butadienyl-benzothiazole 3 is a PET imaging agent designed for capturing pathological tau aggregates in diverse neurodegenerative disorders, and would be of clinical utility for neuropathological investigations of PSP. OBJECTIVES: To explore the usefulness of [11 C]pyridinyl-butadienyl-benzothiazole 3/PET in assessing characteristic distributions of tau pathologies and their association with clinical symptoms in the brains of living PSP patients. METHODS: We assessed 13 PSP patients and 13 age-matched healthy control subjects. Individuals negative for amyloid ß PET with [11 C]Pittsburgh compound B underwent clinical scoring, MR scans, and [11 C]pyridinyl-butadienyl-benzothiazole 3/PET. RESULTS: There were significant differences in binding potential for [11 C]pyridinyl-butadienyl-benzothiazole 3 between PSP patients and healthy control subjects (P = 0.02). PSP patients exhibited greater radioligand retention than healthy control subjects in multiple brain regions, including frontoparietal white matter, parietal gray matter, globus pallidus, STN, red nucleus, and cerebellar dentate nucleus. [11 C]pyridinyl-butadienyl-benzothiazole 3 deposition in frontoparietal white matter, but not gray matter, was correlated with general severity of parkinsonian and PSP symptoms, whereas both gray matter and white matter [11 C]pyridinyl-butadienyl-benzothiazole 3 accumulations in the frontoparietal cortices were associated with nonverbal cognitive impairments. Autoradiographic and fluorescence labeling with pyridinyl-butadienyl-benzothiazole 3 was observed in gray matter and white matter of PSP motor cortex tissues. CONCLUSIONS: Our findings support the in vivo detectability of tau fibrils characteristic of PSP by [11 C]pyridinyl-butadienyl-benzothiazole 3/PET, and imply distinct and synergistic contributions of gray matter and white matte tau pathologies to clinical symptoms. [11 C]pyridinyl-butadienyl-benzothiazole 3/PET potentially provides a neuroimaging-based index for the evolution of PSP tau pathologies promoting the deterioration of motor and cognitive functions. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Encéfalo/diagnóstico por imagen , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Compuestos de Anilina , Autorradiografía , Benzotiazoles , Encéfalo/metabolismo , Radioisótopos de Carbono , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Tiazoles
19.
J Cereb Blood Flow Metab ; 39(2): 210-222, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29651896

RESUMEN

Positron Emission Tomography (PET) imaging has become a prominent tool to capture the spatiotemporal distribution of neurotransmitters and receptors in the brain. The outcome of a PET study can, however, potentially be obscured by suboptimal and/or inconsistent choices made in complex processing pipelines required to reach a quantitative estimate of radioligand binding. Variations in subject selection, experimental design, data acquisition, preprocessing, and statistical analysis may lead to different outcomes and neurobiological interpretations. We here review the approaches used in 105 original research articles published by 21 different PET centres, using the tracer [11C]DASB for quantification of cerebral serotonin transporter binding, as an exemplary case. We highlight and quantify the impact of the remarkable variety of ways in which researchers are currently conducting their studies, while implicitly expecting generalizable results across research groups. Our review provides evidence that the foundation for a given choice of a preprocessing pipeline seems to be an overlooked aspect in modern PET neuroscience. Furthermore, we believe that a thorough testing of pipeline performance is necessary to produce reproducible research outcomes, avoiding biased results and allowing for better understanding of human brain function.


Asunto(s)
Bencilaminas/uso terapéutico , Encéfalo , Radioisótopos de Carbono/uso terapéutico , Tomografía de Emisión de Positrones , Radiofármacos/uso terapéutico , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Femenino , Humanos , Masculino
20.
Neurology ; 92(2): e136-e147, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30530797

RESUMEN

OBJECTIVE: To characterize the distribution of tau pathology in patients with amyotrophic lateral sclerosis/parkinsonism dementia complex on the Kii Peninsula (Kii ALS/PDC) by tau PET using [11C]PBB3 as ligand. METHODS: This is a cross-sectional study of 5 patients with ALS/PDC and one asymptomatic participant with a dense family history of ALS/PDC from the Kii Peninsula who took part in this study. All were men, and their age was 76 ± 8 (mean ± SD) years. Thirteen healthy men (69 ± 6 years) participated as healthy controls (HCs). Dynamic PET scans were performed following injection of [11C]PBB3, and parametric PET images were generated by voxel-by-voxel calculation of binding potential (BP* ND) using a multilinear reference tissue model. [11C] Pittsburgh compound B (PiB) PET, MRI, and cognitive tests were also performed. RESULTS: A voxel-based comparison of [11C]PBB3 BP* ND illustrated PET-detectable tau deposition in the cerebral cortex and white matter, and pontine basis including the corticospinal tract in Kii ALS/PDC patients compared with HCs (uncorrected p < 0.05). Group-wise volume of interest analysis of [11C]PBB3 BP* ND images showed increased BP* ND in the hippocampus and in frontal and parietal white matters of Kii ALS/PDC patients relative to HCs (p < 0.05, Holm-Sidak multiple comparisons test). BP* ND in frontal, temporal, and parietal gray matters correlated with Mini-Mental State Examination scores in Kii ALS/PDC patients (p < 0.05). All Kii ALS/PDC patients were negative for [11C]PiB (ß-amyloid) except one with marginal positivity. CONCLUSION: [11C]PBB3 PET visualized the characteristic topography of tau pathology in Kii ALS/PDC, corresponding to clinical phenotypes of this disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/diagnóstico por imagen , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Benzotiazoles/farmacocinética , Encéfalo/efectos de los fármacos , Estudios Transversales , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Japón/epidemiología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones , Tritio/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...