Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(19): e2301252120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126691

RESUMEN

Intestinal bile acids play an essential role in the Clostridioides difficile lifecycle having been shown in vitro to modulate various aspects of pathogenesis, including spore germination, vegetative growth, and more recently the action of the primary virulence determinant, TcdB. Here, we investigated whether physiological levels of the total pool of intestinal bile acids in mice and humans protect against TcdB action. Small molecules extracted from the lumenal contents of the small intestine, cecum, colon, and feces were found to inhibit TcdB in accordance with the differential amounts of total bile acids in each compartment. Extracts from antibiotic-treated and germ-free mice, despite harboring dramatically altered bile acid profiles, unexpectedly also prevented TcdB-induced cell rounding to similar extents. We show that protection, however, is surmountable and can be overcome at higher doses of TcdB-typical to those seen during severe C. difficile infection-suggesting that the protective properties of intestinal bile acids are operant primarily under low to moderate toxin levels. Taken together, these findings demonstrate a role for intestinal bile acids in attenuating virulence, provide insights into asymptomatic carriage of toxigenic C. difficile, and inform strategies to manipulate bile acid levels for therapeutic benefit.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , Humanos , Ratones , Animales , Ácidos y Sales Biliares , Infecciones por Clostridium/patología , Intestinos/patología , Proteínas Bacterianas
2.
Antimicrob Agents Chemother ; 66(7): e0043922, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35703551

RESUMEN

An essential step in the infection life cycle of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the proteolytic activation of the viral spike (S) protein, which enables membrane fusion and entry into the host cell. Two distinct classes of host proteases have been implicated in the S protein activation step: cell-surface serine proteases, such as the cell-surface transmembrane protease, serine 2 (TMPRSS2), and endosomal cathepsins, leading to entry through either the cell-surface route or the endosomal route, respectively. In cells expressing TMPRSS2, inhibiting endosomal proteases using nonspecific cathepsin inhibitors such as E64d or lysosomotropic compounds such as hydroxychloroquine fails to prevent viral entry, suggesting that the endosomal route of entry is unimportant; however, mechanism-based toxicities and poor efficacy of these compounds confound our understanding of the importance of the endosomal route of entry. Here, to identify better pharmacological agents to elucidate the role of the endosomal route of entry, we profiled a panel of molecules identified through a high-throughput screen that inhibit endosomal pH and/or maturation through different mechanisms. Among the three distinct classes of inhibitors, we found that inhibiting vacuolar-ATPase using the macrolide bafilomycin A1 was the only agent able to potently block viral entry without associated cellular toxicity. Using both pseudotyped and authentic virus, we showed that bafilomycin A1 inhibits SARS-CoV-2 infection both in the absence and presence of TMPRSS2. Moreover, synergy was observed upon combining bafilomycin A1 with Camostat, a TMPRSS2 inhibitor, in neutralizing SARS-CoV-2 entry into TMPRSS2-expressing cells. Overall, this study highlights the importance of the endosomal route of entry for SARS-CoV-2 and provides a rationale for the generation of successful intervention strategies against this virus that combine inhibitors of both entry pathways.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , ATPasas de Translocación de Protón Vacuolares , Endosomas/metabolismo , Humanos , SARS-CoV-2 , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
3.
Proc Natl Acad Sci U S A ; 117(12): 6792-6800, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152097

RESUMEN

Intestinal bile acids are known to modulate the germination and growth of Clostridioides difficile Here we describe a role for intestinal bile acids in directly binding and neutralizing TcdB toxin, the primary determinant of C. difficile disease. We show that individual primary and secondary bile acids reversibly bind and inhibit TcdB to varying degrees through a mechanism that requires the combined oligopeptide repeats region to which no function has previously been ascribed. We find that bile acids induce TcdB into a compact "balled up" conformation that is no longer able to bind cell surface receptors. Lastly, through a high-throughput screen designed to identify bile acid mimetics we uncovered nonsteroidal small molecule scaffolds that bind and inhibit TcdB through a bile acid-like mechanism. In addition to suggesting a role for bile acids in C. difficile pathogenesis, these findings provide a framework for development of a mechanistic class of C. difficile antitoxins.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Clostridioides difficile/metabolismo , Intestinos/fisiología , Receptores de Superficie Celular/metabolismo , Células CACO-2 , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/microbiología , Células HCT116 , Humanos
4.
Trends Pharmacol Sci ; 40(3): 155-156, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30685063

RESUMEN

Clostridium difficile (Clostridioides difficile) is a toxin-producing, multidrug-resistant bacterium. Inhibiting the effects of toxins, which are responsible for the symptoms of disease, is viewed as a promising non-antibiotic approach to treat C. difficile infection (CDI). By inducing premature activation of toxins, Ivarsson and colleagues (Cell Chemical Biology 2018; http://doi.org/10.1016/j.chembiol.2018.10.002) uncover a clever new strategy to block toxin action.


Asunto(s)
Infecciones por Clostridium , Proteínas Bacterianas , Toxinas Bacterianas , Clostridioides difficile , Humanos , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA