Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811851

RESUMEN

The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.

2.
Nature ; 609(7928): 779-784, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104564

RESUMEN

Self-renewal and differentiation are tightly controlled to maintain haematopoietic stem cell (HSC) homeostasis in the adult bone marrow1,2. During fetal development, expansion of HSCs (self-renewal) and production of differentiated haematopoietic cells (differentiation) are both required to sustain the haematopoietic system for body growth3,4. However, it remains unclear how these two seemingly opposing tasks are accomplished within the short embryonic period. Here we used in vivo genetic tracing in mice to analyse the formation of HSCs and progenitors from intra-arterial haematopoietic clusters, which contain HSC precursors and express the transcription factor hepatic leukaemia factor (HLF). Through kinetic study, we observed the simultaneous formation of HSCs and defined progenitors-previously regarded as descendants of HSCs5-from the HLF+ precursor population, followed by prompt formation of the hierarchical haematopoietic population structure in the fetal liver in an HSC-independent manner. The transcription factor EVI1 is heterogeneously expressed within the precursor population, with EVI1hi cells being predominantly localized to intra-embryonic arteries and preferentially giving rise to HSCs. By genetically manipulating EVI1 expression, we were able to alter HSC and progenitor output from precursors in vivo. Using fate tracking, we also demonstrated that fetal HSCs are slowly used to produce short-term HSCs at late gestation. These data suggest that fetal HSCs minimally contribute to the generation of progenitors and functional blood cells before birth. Stem cell-independent pathways during development thus offer a rational strategy for the rapid and simultaneous growth of tissues and stem cell pools.


Asunto(s)
Linaje de la Célula , Feto , Células Madre Hematopoyéticas , Hígado , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Médula Ósea , Diferenciación Celular , Autorrenovación de las Células , Rastreo Celular , Femenino , Feto/citología , Células Madre Hematopoyéticas/citología , Hígado/citología , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Ratones , Embarazo , Factores de Transcripción/metabolismo
3.
Biol Open ; 11(9)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36017733

RESUMEN

Recent genetic lineage tracing studies reveal heterogeneous origins of vascular endothelial cells and pericytes in the developing brain vasculature, despite classical experimental evidence for a mesodermal origin. Here we provide evidence through a genetic lineage tracing experiment that cephalic paraxial mesodermal cells give rise to endothelial cells and pericytes in the developing mouse brain. We show that Hepatic leukemia factor (Hlf) is transiently expressed by cephalic paraxial mesenchyme at embryonic day (E) 8.0-9.0 and the genetically marked E8.0 Hlf-expressing cells mainly contribute to the developing brain vasculature. Interestingly, the genetically marked E10.5 Hlf-expressing cells, which have been previously reported to contain embryonic hematopoietic stem cells, fail to contribute to the vascular cells. Combined, our genetic lineage tracing data demonstrate that a transient expression of Hlf marks a cephalic paraxial mesenchyme contributing to the developing brain vasculature. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Células Endoteliales , Leucemia , Animales , Encéfalo , Humanos , Leucemia/metabolismo , Mesodermo , Ratones , Células Madre
5.
Nucleic Acids Res ; 37(19): 6515-27, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19729513

RESUMEN

Viruses use alternative splicing to produce a broad series of proteins from small genomes by utilizing the cellular splicing machinery. Since viruses use cellular RNA binding proteins for viral RNA processing, it is presumable that the splicing of cellular pre-mRNAs is affected by viral infection. Here, we showed that herpes simplex virus type 2 (HSV-2) modifies the expression of promyelocytic leukemia (PML) isoforms by altering pre-mRNA splicing. Using a newly developed virus-sensitive splicing reporter, we identified the viral protein ICP27 as an alternative splicing regulator of PML isoforms. ICP27 was found to bind preferentially to PML pre-mRNA and directly inhibit the removal of PML intron 7a in vitro. Moreover, we demonstrated that ICP27 functions as a splicing silencer at the 3' splice site of the PML intron 7a. The switching of PML isoform from PML-II to PML-V as induced by ICP27 affected HSV-2 replication, suggesting that the viral protein modulates the splicing code of cellular pre-mRNA(s) governing virus propagation.


Asunto(s)
Proteínas Nucleares/genética , Empalme del ARN , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Proteínas Virales/metabolismo , Línea Celular , Genes Reporteros , Herpesvirus Humano 2 , Humanos , Intrones , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , ARN/metabolismo , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...