Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8: 16011, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28685774

RESUMEN

Fox odour 2,4,5-trimethyl thiazoline (TMT) is known to activate multiple glomeruli in the mouse olfactory bulb (OB) and elicits strong fear responses. In this study, we screened TMT-reactive odourant receptors and identified Olfr1019 with high ligand reactivity and selectivity, whose glomeruli are located in the posterodorsal OB. In the channelrhodopsin knock-in mice for Olfr1019, TMT-responsive olfactory-cortical regions were activated by photostimulation, leading to the induction of immobility, but not aversive behaviour. Distribution of photoactivation signals was overlapped with that of TMT-induced signals, but restricted to the narrower regions. In the knockout mice, immobility responses were reduced, but not entirely abolished likely due to the compensatory function of other TMT-responsive glomeruli. Our results demonstrate that the activation of a single glomerular species in the posterodorsal OB is sufficient to elicit immobility responses and that TMT-induced fear may be separated into at least two different components of immobility and aversion.


Asunto(s)
Miedo/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Percepción Olfatoria/fisiología , Receptores Odorantes/genética , Olfato/fisiología , Tiazoles/farmacología , Animales , Agentes Aversivos/aislamiento & purificación , Agentes Aversivos/farmacología , Conducta Animal/efectos de los fármacos , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Miedo/psicología , Heces/química , Zorros , Reacción Cataléptica de Congelación/fisiología , Expresión Génica , Técnicas de Sustitución del Gen , Masculino , Ratones , Odorantes/análisis , Bulbo Olfatorio/fisiología , Estimulación Luminosa , Receptores Odorantes/metabolismo , Técnicas Estereotáxicas , Tiazoles/aislamiento & purificación
2.
J Neurosci ; 35(29): 10581-99, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26203152

RESUMEN

An odor induces food-seeking behaviors when humans and animals learned to associate the odor with food, whereas the same odor elicits aversive behaviors following odor-danger association learning. It is poorly understood how central olfactory circuits transform the learned odor cue information into appropriate motivated behaviors. The olfactory tubercle (OT) is an intriguing area of the olfactory cortex in that it contains medium spiny neurons as principal neurons and constitutes a part of the ventral striatum. The OT is therefore a candidate area for participation in odor-induced motivated behaviors. Here we mapped c-Fos activation of medium spiny neurons in different domains of the mouse OT following exposure to learned odor cues. Mice were trained to associate odor cues to a sugar reward or foot shock punishment to induce odor-guided approach behaviors or aversive behaviors. Regardless of odorant types, the anteromedial domain of the OT was activated by learned odor cues that induced approach behaviors, whereas the lateral domain was activated by learned odor cues that induced aversive behaviors. In each domain, a larger number of dopamine receptor D1 type neurons were activated than D2 type neurons. These results indicate that specific domains of the OT represent odor-induced distinct motivated behaviors rather than odor stimuli, and raise the possibility that neuronal type-specific activation in individual domains of the OT plays crucial roles in mediating the appropriate learned odor-induced motivated behaviors. Significance statement: Although animals learn to associate odor cues with various motivated behaviors, the underlying circuit mechanisms are poorly understood. The olfactory tubercle (OT), a subarea of the olfactory cortex, also constitutes the ventral striatum. Here, we trained mice to associate odors with either reward or punishment and mapped odor-induced c-Fos activation in the OT. Regardless of odorant types, the anteromedial domain was activated by approach behavior-inducing odors, whereas the lateral domain was activated by aversive behavior-inducing odors. In each domain, dopamine receptor D1 neurons were preferentially activated over D2 neurons. The results indicate that specific OT domains represent odor-induced distinct motivated behaviors rather than odor types, and suggest the importance of neuronal type-specific activation in individual domains in mediating appropriate behaviors.


Asunto(s)
Aprendizaje por Asociación/fisiología , Conducta Animal/fisiología , Mapeo Encefálico/métodos , Tubérculo Olfatorio/fisiología , Animales , Señales (Psicología) , Aprendizaje Discriminativo/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Odorantes , Olfato/fisiología
3.
Mol Cell Neurosci ; 68: 143-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26169026

RESUMEN

Olfactory mitral cells extend lateral secondary dendrites that contact the lateral secondary and apical primary dendrites of other mitral cells in the external plexiform layer (EPL) of the olfactory bulb. The lateral dendrites further contact granule cell dendrites, forming dendrodendritic reciprocal synapses in the EPL. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. We recently showed that the immunoglobulin-like cell adhesion molecule nectin-1 constitutes a novel adhesion apparatus at the contacts between mitral cell lateral dendrites, between mitral cell lateral and apical dendrites, and between mitral cell lateral dendrites and granule cell dendritic spine necks in the deep sub-lamina of the EPL of the developing mouse olfactory bulb and named them nectin-1 spots. We investigated here the role of the nectin-1 spots in the formation of dendritic structures in the EPL of the mouse olfactory bulb. We showed that in cultured nectin-1-knockout mitral cells, the number of branching points of mitral cell dendrites was reduced compared to that in the control cells. In the deep sub-lamina of the EPL in the nectin-1-knockout olfactory bulb, the number of branching points of mitral cell lateral dendrites and the number of dendrodendritic reciprocal synapses were reduced compared to those in the control olfactory bulb. These results indicate that the nectin-1 spots regulate the branching of mitral cell dendrites in the deep sub-lamina of the EPL and suggest that the nectin-1 spots are required for odor information processing in the olfactory bulb.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Dendritas/fisiología , Regulación de la Expresión Génica/genética , Neuronas/citología , Bulbo Olfatorio/citología , Actinas/genética , Actinas/metabolismo , Animales , Biotina/análogos & derivados , Moléculas de Adhesión Celular/genética , Células Cultivadas , Dextranos , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Nectinas , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
4.
J Neurosci ; 34(17): 5788-99, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760839

RESUMEN

The olfactory bulb (OB) is one of the two major loci in the mammalian brain where newborn neurons are constantly integrated into the neural circuit during postnatal life. Newborn neurons are generated from neural stem cells in the subventricular zone (SVZ) of the lateral ventricle and migrate to the OB through the rostral migratory stream. The majority of these newborn neurons differentiate into inhibitory interneurons, such as granule cells and periglomerular cells. It has been reported that prolonged supply of newborn neurons leads to continuous addition/turnover of the interneuronal populations and contributes to functional integrity of the OB circuit. However, it is not still clear how and to what extent postnatal-born neurons contribute to OB neural circuit formation, and the functional role of postnatal neurogenesis in odor-related behaviors remains elusive. To address this question, here by using genetic strategies, we first determined the unique integration mode of newly born interneurons during postnatal development of the mouse OB. We then manipulated these interneuron populations and found that continuous postnatal neurogenesis in the SVZ-OB plays pivotal roles in flexible olfactory associative learning and memory.


Asunto(s)
Aprendizaje por Asociación/fisiología , Red Nerviosa/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Percepción Olfatoria/fisiología , Animales , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/fisiología , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/fisiología , Interneuronas/citología , Interneuronas/fisiología , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/citología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neuronas/citología , Odorantes , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo
5.
J Neurosci ; 32(23): 7970-85, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22674272

RESUMEN

Odor signals are conveyed from the olfactory bulb to the olfactory cortex (OC) by mitral cells (MCs) and tufted cells (TCs). However, whether and how the two types of projection neuron differ in function and axonal connectivity is still poorly understood. Odor responses and axonal projection patterns were compared between MCs and TCs in mice by visualizing axons of electrophysiologically identified single neurons. TCs demonstrated shorter onset latency for reliable responses than MCs. The shorter latency response of TCs was maintained in a wide range of odor concentrations, whereas MCs responded only to strong signals. Furthermore, individual TCs projected densely to focal targets only in anterior areas of the OC, whereas individual MCs dispersedly projected to all OC areas. Surprisingly, in anterior OC areas, the two cell types projected to segregated subareas. These results suggest that MCs and TCs transmit temporally distinct odor information to different OC targets.


Asunto(s)
Neuronas/fisiología , Odorantes , Vías Olfatorias/citología , Vías Olfatorias/fisiología , Olfato/fisiología , Animales , Axones/fisiología , Butiratos , Análisis por Conglomerados , Interpretación Estadística de Datos , Dendritas/fisiología , Dendritas/ultraestructura , Fenómenos Electrofisiológicos , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroimagen , Bulbo Olfatorio/fisiología , Consumo de Oxígeno/fisiología , Terminales Presinápticos/fisiología , Curva ROC , Análisis de la Célula Individual , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA