Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1344831, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585697

RESUMEN

Rice serves as a staple food across various continents worldwide. The rice plant faces significant threats from a range of fungal, bacterial, and viral pathogens. Among these, rice false smut disease (RFS) caused by Villosiclava virens is one of the devastating diseases in rice fields. This disease is widespread in major rice-growing regions such as China, Pakistan, Bangladesh, India, and others, leading to significant losses in rice plantations. Various toxins are produced during the infection of this disease in rice plants, impacting the fertilization process as well. This review paper lightens the disease cycle, plant immunity, and infection process during RFS. Mycotoxin production in RFS affects rice plants in multiple ways, although the exact phenomena are still unknown.

2.
Heliyon ; 10(7): e28209, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586335

RESUMEN

Background and aim: Citrus bent leaf viroid (CBLVd) is one of the emerging and widely distributed viroids in citrus-growing areas of the world, including Pakistan. Previously, CBLVd has been reported in Pakistan for the first time in 2009. Therefore, characterization of CBLVd is required to monitor the viroid status in the citrus orchards concerning citrus decline. Methods: Biological and molecular characterization of CBLVd was studied through biological indexing and confirmation through RT-PCR, followed by phylogenetic analysis of selected CBLVd isolates. Among four citrus cultivars viz., Kinnow (Citrus nobilis × Citrus deliciosa), Mosambi (C. sinensis), Futrell's Early (C. reticulata) and Lemon (C. medica) used as indicator plants for two transmission trials viz., graft inoculation and mechanical inoculation. Graft inoculation was more efficient than mechanical inoculation. Results: Symptoms such as mild mosaic, slight backward leaf bending, and leaf curling were observed after eight months' post-inoculation. Citrus nobilis × Citrus deliciosa, C. reticulata and C. sinensis were more sensitive to CBLVd as compared to C. medica. Inoculated plants were reconfirmed through RT-PCR amplicons of 233 bp. The phylogenetic tree of submitted sequences showed more than 90% relevance of CBLVd in Pakistan compared to the rest of the world. Conclusions: There was slight genetic variability, but more than 90% relevance was found among the submitted and already reported CBLVd isolate from Pakistan. Scanty literature is available regarding the biological and molecular studies of CBLVd in Pakistan. Therefore, the transmission and molecular characterization of CBLVd in Pakistan were studied for the first time.

3.
Microorganisms ; 11(10)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37894173

RESUMEN

Mycoviruses, or fungal viruses, are prevalent in all significant fungal kingdoms and genera. These low-virulence viruses can be used as biocontrol agents to manage fungal diseases. These viruses are divided into 19 officially recognized families and 1 unclassified genus. Mycoviruses alter sexual reproduction, pigmentation, and development. Spores and fungal hypha spread mycoviruses. Isometric particles mostly encapsulate dsRNA mycoviruses. The widespread plant-pathogenic fungus Rhizoctonia solani, which has caused a rice sheath blight, has hosted many viruses with different morphologies. It causes significant crop diseases that adversely affect agriculture and the economy. Rice sheath blight threatens the 40% of the global population that relies on rice for food and nutrition. This article reviews mycovirology research on Rhizoctonia solani to demonstrate scientific advances. Mycoviruses control rice sheath blight. Hypovirulence-associated mycoviruses are needed to control R. solani since no cultivars are resistant. Mycoviruses are usually cryptic, but they can benefit the host fungus. Phytopathologists may use hypovirulent viruses as biological control agents. New tools are being developed based on host genome studies to overcome the intellectual challenge of comprehending the interactions between viruses and fungi and the practical challenge of influencing these interactions to develop biocontrol agents against significant plant pathogens.

4.
Front Microbiol ; 14: 1153437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143531

RESUMEN

Rice production is severely hampered by the bakanae disease (Fusarium fujikuroi), formerly recognized as Fusarium moniliforme. F. moniliforme was called the F. fujikuroi species complex (FFSC) because it was later discovered that it had some separate species. The FFSC's constituents are also well recognized for producing phytohormones, which include auxins, cytokinin, and gibberellins (GAs). The normal symptoms of bakanae disease in rice are exacerbated by GAs. The members of the FFSC are responsible for the production of fumonisin (FUM), fusarins, fusaric acid, moniliformin, and beauvericin. These are harmful to both human and animal health. This disease is common around the world and causes significant yield losses. Numerous secondary metabolites, including the plant hormone gibberellin, which causes classic bakanae symptoms, are produced by F. fujikuroi. The strategies for managing bakanae, including the utilization of host resistance, chemical compounds, biocontrol agents, natural goods, and physical approaches, have been reviewed in this study. Bakanae disease is still not entirely preventable, despite the adoption of many different tactics that have been used to manage it. The benefits and drawbacks of these diverse approaches are discussed by the authors. The mechanisms of action of the main fungicides as well as the strategies for resistance to them are outlined. The information compiled in this study will contribute to a better understanding of the bakanae disease and the development of a more effective management plan for it.

5.
Front Microbiol ; 14: 1291904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38352061

RESUMEN

Integrating fungi into fuel cell systems presents a promising opportunity to address environmental pollution while simultaneously generating energy. This review explores the innovative concept of constructing wetlands as fuel cells for pollutant degradation, offering a practical and eco-friendly solution to pollution challenges. Fungi possess unique capabilities in producing power, fuel, and electricity through metabolic processes, drawing significant interest for applications in remediation and degradation. Limited data exist on fungi's ability to generate electricity during catalytic reactions involving various enzymes, especially while remediating pollutants. Certain species, such as Trametes versicolor, Ganoderma lucidum, Galactomyces reessii, Aspergillus spp., Kluyveromyce smarxianus, and Hansenula anomala, have been reported to generate electricity at 1200 mW/m3, 207 mW/m2, 1,163 mW/m3, 438 mW/m3, 850,000 mW/m3, and 2,900 mW/m3, respectively. Despite the eco-friendly potential compared to conventional methods, fungi's role remains largely unexplored. This review delves into fungi's exceptional potential as fuel cell catalysts, serving as anodic or cathodic agents to mitigate land, air, and water pollutants while simultaneously producing fuel and power. Applications cover a wide range of tasks, and the innovative concept of wetlands designed as fuel cells for pollutant degradation is discussed. Cost-effectiveness may vary depending on specific contexts and applications. Fungal fuel cells (FFCs) offer a versatile and innovative solution to global challenges, addressing the increasing demand for alternative bioenergy production amid population growth and expanding industrial activities. The mechanistic approach of fungal enzymes via microbial combinations and electrochemical fungal systems facilitates the oxidation of organic substrates, oxygen reduction, and ion exchange membrane orchestration of essential reactions. Fungal laccase plays a crucial role in pollutant removal and monitoring environmental contaminants. Fungal consortiums show remarkable potential in fine-tuning FFC performance, impacting both power generation and pollutant degradation. Beyond energy generation, fungal cells effectively remove pollutants. Overall, FFCs present a promising avenue to address energy needs and mitigate pollutants simultaneously.

7.
Front Microbiol ; 13: 884469, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694310

RESUMEN

Rhizoctonia solani is a pathogen that causes considerable harm to plants worldwide. In the absence of hosts, R. solani survives in the soil by forming sclerotia, and management methods, such as cultivar breeding, crop rotations, and fungicide sprays, are insufficient and/or inefficient in controlling R. solani. One of the most challenging problems facing agriculture in the twenty-first century besides with the impact of global warming. Environmentally friendly techniques of crop production and improved agricultural practices are essential for long-term food security. Trichoderma spp. could serve as an excellent example of a model fungus to enhance crop productivity in a sustainable way. Among biocontrol mechanisms, mycoparasitism, competition, and antibiosis are the fundamental mechanisms by which Trichoderma spp. defend against R. solani, thereby preventing or obstructing its proliferation. Additionally, Trichoderma spp. induce a mixed induced systemic resistance (ISR) or systemic acquired resistance (SAR) in plants against R. solani, known as Trichoderma-ISR. Stimulation of every biocontrol mechanism involves Trichoderma spp. genes responsible for encoding secondary metabolites, siderophores, signaling molecules, enzymes for cell wall degradation, and plant growth regulators. Rhizoctonia solani biological control through genes of Trichoderma spp. is summarized in this paper. It also gives information on the Trichoderma-ISR in plants against R. solani. Nonetheless, fast-paced current research on Trichoderma spp. is required to properly utilize their true potential against diseases caused by R. solani.

8.
Mol Biol Rep ; 49(2): 1581-1586, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34773552

RESUMEN

BACKGROUND: A 328-nucleotide variant of citrus bent leaf viroid (CBLVd) was characterized by citrus varieties in Malaysia. After the first report in Malaysia, the emerging CBLVd was detected in five citrus species, namely Citrofortunella microcarpa, Citrus aurantifolia, Citrus hystrix, Citrus maxima, and Citrus sinensis. METHODS AND RESULTS: CBLVd was detected in 23 out of 133 symptomatic samples through RT-PCR. Sequence analysis of the RT-PCR amplicons from this study showed 99-100% sequence identity to the reference CBLVd Jp isolate and CBLVd isolates reported in Malaysia. Inoculation of sap, obtained from a CBLVd positive sample, into 6-month old healthy C. microcarpa seedlings showed symptoms of slight leaf bending, reduced leaf size of matured leaves, and mild mosaic between 4 to 6 months after inoculation. Moreover, the observed symptoms of chlorosis, midvein necrosis, leaf rolling, and smalling of leaves in calamondin, C. microcarpa (Bunge) Wijnands, were not reported in earlier studies and opened a new avenue for the study of symptomology. The mechanical transmissibility of CBLVd in the inoculated seedlings was reconfirmed by RT-PCR assay and sequencing. CONCLUSIONS: Based on the results, the sequence similarity of CBLVd isolates from different areas of Malaysia showed no significant difference among each other and the reference isolate. The CBLVd is mechanically transmissible and could produce variable symptoms in different hosts.


Asunto(s)
Viroides/genética , Viroides/aislamiento & purificación , Viroides/patogenicidad , Secuencia de Bases/genética , Citrus/genética , Citrus/virología , Malasia/epidemiología , Conformación de Ácido Nucleico , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , ARN Viral/genética , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...