Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 389(1): 132-48, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17935759

RESUMEN

We investigated the effects of natural environments and human activity on Lake Biwa, central Japan. We determined the concentrations of 19 elements and the compositions of stable S and Sr isotopes in the main tributaries of the lake and compared them with the corresponding values obtained from the lake water during the circulation period. Results of a principal component analysis indicated that the components dissolved in the lower reaches of the tributaries can be divided into group 1 (HCO(3), SO(4), NO(3), Ca, Mg, Sr) and group 2 components (Cl, Br, Na, K, Ba, Rb, Cs). The concentrations of group 1 components were high in the rivers of the southern area, which is urbanized and densely populated, and the eastern area, which consists of plains where agriculture predominates, compared with the rivers of the northern and western areas, which are mostly mountainous and sparsely populated. The concentrations of group 2 components tended to be high in the river water of industrial areas. The delta(34)S values of SO(4) in the river water converged to 0+/-2 per thousand as the SO(4) concentration increased and, excluding the areas where limestone is extensively distributed, as the HCO(3) concentration increased. In particular, both the delta(34)S values (0+/-2 per thousand) and the (87)Sr/(86)Sr ratios (0.7117+/-0.0005) fell within narrow ranges in the small and medium rivers of the eastern plain area, where rice is widely grown. These values agreed respectively with the delta(34)S values of the fertilizers used in the Lake Biwa basin and the soil-exchangeable (87)Sr/(86)Sr in the eastern plain. The characteristics of water quality in the small and medium rivers of the eastern area can be explained by a model in which sulfuric, nitric, and bicarbonic acids generated by the decomposition of agricultural fertilizer and paddy rice selectively leached out alkaline-earth elements adsorbed on the soil and sediments of the plain or dissolved calcium carbonate enriched with Mg and Sr. Compared with tributary waters, the lake water was depleted in NO(3), owing to denitrification, and in Mn, owing to mineralization, which occur under the redox condition of bottom sediments. Excluding NO(3) and Mn, the compositions of both the dissolved elements and the Sr and S isotopes in the water of Lake Biwa can be approximately reproduced by simple mixing of the tributary water, indicating that these components provide effective indices for evaluating the relationship between the waters of the lake and its tributaries.


Asunto(s)
Agricultura , Agua Dulce/química , Contaminantes del Agua/análisis , Monitoreo del Ambiente , Japón , Ríos/química , Azufre/análisis , Isótopos de Azufre/análisis
2.
Sci Total Environ ; 384(1-3): 342-54, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17604083

RESUMEN

Sulfur and strontium isotopes (delta(34)S and (87)Sr/(86)Sr) were determined in 39 river water samples collected over three different cultivation periods (April, May, and June), and in several materials used for comparison (fertilizers, detergents, soils, irrigation and agricultural waters), to evaluate the impact of fertilizers on a small agricultural watershed of Lake Biwa, in central Japan. delta(34)S values in river water decreased (from +5.8 to -2.0 per thousand) with increasing SO(4) concentrations (3.8 to 93.2 ppm) from upstream to downstream of the watershed. Comparison of river water S isotopes with those of possible source materials indicates that the enrichment of SO(4) can be attributed to the dissolution of two kinds of fertilizers: (1) compound fertilizers commonly used in this area and (2) ammonium sulfate which is applied on a small scale. In contrast, (87)Sr/(86)Sr values of river water decreased with time from April (avg. 0.71163), through May (avg. 0.71139), to June (avg. 0.71127). The tendency of the sample plots on the (87)Sr/(86)Sr vs. 1/Sr diagram suggests a time-dependent increase in the contribution of soil water to the river, which is partly affected by the Sr-bearing fertilizers. It is suggested that a maximum of 25% of dissolved Sr is derived from these fertilizers, while more than 75% of it is of rock origin. Mass balance calculations permitted us to evaluate the proportion of fertilizer contribution in each river. Combined use of S and Sr isotopes together with concentration data could be a new environmental diagnosis technique for rivers and soils in localized watersheds.


Asunto(s)
Monitoreo del Ambiente , Fertilizantes/análisis , Agua Dulce/química , Isótopos de Estroncio/análisis , Isótopos de Azufre/análisis , Contaminantes Químicos del Agua/análisis , Japón , Metales Pesados/análisis
3.
Sci Total Environ ; 345(1-3): 1-12, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15919522

RESUMEN

To study the deterioration of the water quality in Lake Biwa, Japan, over the last 40 years, we measured the concentrations and isotopic ratios of sulfur and strontium of water in 41 inflowing rivers and one discharging river. The concentrations of SO4 and Sr of inflowing rivers at downstream sites were generally high in the southern urban area and in the eastern area, where a large agricultural plain is situated, but low in the northern and western areas, whose watersheds are mountainous and with low population density. SO4 and Sr concentrations are also lower at upstream sites, which are closer to mountainous areas. Thus, the inflowing river receives large amounts of SO4 and Sr as it flows across the plain, where human activity levels are high. The delta34S or 87Sr/86Sr values of most eastern rivers at downstream sites are lower than those of water in Lake Biwa, and values become more uniform as the proportion of the plain area in the watershed increases. River water in other areas has higher values of delta34S or 87Sr/86Sr than the lake water. This result indicates that the decadal decrease of delta34S and 87Sr/86Sr in the lake water has been caused mainly by the increased flux of SO4 and Sr from rivers in the eastern plain. We assume that in the plain, sulfur, nitrogen, and organic compounds induced by human activities generate sulfuric, nitric, and organic acids in the water, which accelerate the extraction of Sr from bedrocks, leading to the generation of Sr in the river water in the area.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/química , Actividades Humanas , Ríos/química , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua/normas , Agua Dulce/química , Fenómenos Geológicos , Geología , Japón , Isótopos de Estroncio/análisis , Isótopos de Azufre/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...