Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 108(3): 520-537, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33783814

RESUMEN

PREMISE: Common taxonomic practices, which condition species' descriptions on diagnostic morphological traits, may systematically lump outcrossing species and unduly split selfing species. Specifically, higher effective population sizes and genetic diversity of obligate outcrossers are expected to result less reliable phenotypic diagnoses. Wild tomatoes, members of Solanum sect. Lycopersicum, are commonly used as a source of exotic germplasm for improvement of the cultivated tomato, and are increasingly employed in basic research. Although the section experienced significant early work, which continues presently, the taxonomic status of many wild species has undergone a number of significant revisions and remains uncertain. Species in this section vary in their breeding systems, notably the expression of self-incompatibility, which determines individual propensity for outcrossing METHODS: Here, we examine the taxonomic status of obligately outcrossing Chilean wild tomato (Solanum chilense) using reduced-representation sequencing (RAD-seq), a range of phylogenetic and population genetic analyses, as well as analyses of crossing and morphological data. RESULTS: Overall, each of our analyses provides a considerable weight of evidence that the Pacific coastal populations and Andean inland populations of the currently described Solanum chilense represent separately evolving populations, and conceal at least one undescribed cryptic species. CONCLUSIONS: Despite its vast economic importance, Solanum sect. Lycopersicon still exhibits considerable taxonomic instability. A pattern of under-recognition of outcrossing species may be common, not only in tomatoes, but across flowering plants. We discuss the possible causes and implications of this observation, with a focus on macroevolutionary inference.


Asunto(s)
Solanum lycopersicum , Solanum , Chile , Solanum lycopersicum/genética , Filogenia , Fitomejoramiento , Solanum/genética
2.
Evolution ; 60(5): 1098-103, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16817548

RESUMEN

Early models of plant mating-system evolution argued that predominant outcrossing and selfing are alternative stable states. At least for animal-pollinated species, recent summaries of empirical studies have suggested the opposite-that outcrossing rates do not show the expected bimodal distribution. However, it is generally accepted that several potential biases can affect conclusions from surveys of published outcrossing rates. Here, we examine one potential bias and find that published studies of outcrossing rates contain far fewer obligate outcrossers than expected. We approximate the magnitude of this study bias and present the distribution of outcrossing rates after compensating for it. Because this study examines only one potential bias, and finds it to be large, conclusions regarding either the frequency of mixed mating or the shape of the distribution of outcrossing rates in nature are premature.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Reproducción , Cruzamientos Genéticos , Ambiente , Plantas/clasificación , Plantas/genética , América del Sur
3.
Evolution ; 59(9): 2048-55, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16261741

RESUMEN

In North American Lycium (Solanaceae), the evolution of gender dimorphism has been proposed as a means of restoring outcrossing after polyploidization causes the loss of self-incompatibility. Previous studies of this process in Lycium focused on comparisons between species that differ in ploidy. We examined intraspecific variation in floral morphology and DNA content in populations of L. californicum to determine correlations between sexual system and cytotype. We also used nuclear ITS and GBSSI sequence data to determine whether diploid and polyploid forms represent the same phylogenetic species, and the phylogeographic relationships among populations and ploidy levels. Within populations, no variation in ploidy was found, although among populations there was a perfect correspondence between sexual system and cytotype. Diploid populations were all hermaphroditic, whereas tetraploid populations were all gender dimorphic. There was no clear geographic pattern to the occurrence of diploid and tetraploid forms. Phylogenetic analysis confirms that L. californicum, regardless of ploidy, forms a monophyletic group within the genus Lycium. Sequences from diploid and polyploid individuals did not form reciprocally monophyletic clades, indicating either multiple gains of polyploidy, ongoing gene flow between cytotypes, or lack of lineage sorting since the evolution of polyploidy. The correspondence between ploidy and sex expression is consistent with the hypothesis that polyploidization triggers the evolution of gender dimorphism in this and other Lycium species.


Asunto(s)
Flores/anatomía & histología , Lycium/genética , Filogenia , Ploidias , Caracteres Sexuales , Arizona , Secuencia de Bases , Teorema de Bayes , California , Cartilla de ADN , Citometría de Flujo , Funciones de Verosimilitud , Lycium/anatomía & histología , México , Modelos Genéticos , Datos de Secuencia Molecular , Reproducción/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA