Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Pharmacol ; 35(1): 4-13, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375658

RESUMEN

Minocycline is a tetracycline antibiotic with off-label use as an anti-inflammatory drug. Because it can cross the blood-brain barrier, minocycline has been proposed as an alternative treatment for psychiatric disorders, in which inflammation plays an important role. However, its beneficial effects on anxiety disorders are unclear. Therefore, we performed a systematic review and meta-analysis to evaluate the efficacy of minocycline as an anxiolytic drug in preclinical models. We performed a PubMed search according to the PRISMA guidelines and PICOS strategy. The risk of bias was evaluated using the SYRCLE tool. We included studies that determined the efficacy of minocycline in animal models of anxiety that may involve exposures (e.g. stressors, immunomodulators, injury). Data extracted included treatment effect, dose range, route of administration, and potential mechanisms for the anxiolytic effect. Meta-analysis of twenty studies showed that minocycline reduced anxiety-like behavior in rodents previously exposed to stress or immunostimulants but not in exposure-naïve animals. This effect was not associated with the dose administered or treatment duration. The mechanism for the anxiolytic activity of minocycline may depend on its anti-inflammatory effects in the brain regions involving anxiety. These suggest that minocycline could be repurposed as a treatment for anxiety and related disorders and warrants further evaluation.


Asunto(s)
Ansiolíticos , Minociclina , Humanos , Ratones , Animales , Minociclina/farmacología , Ansiolíticos/farmacología , Modelos Animales de Enfermedad , Antibacterianos/uso terapéutico , Antiinflamatorios
2.
Acta Neuropsychiatr ; : 1-8, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968964

RESUMEN

OBJECTIVE: Preclinical studies suggest that cannabidiol (CBD), a non-intoxicating phytocannabinoid, may reduce addiction-related behaviours for various drug classes in rodents, including ethanol, opiates, and psychostimulants. CBD modulates contextual memories and responses to reward stimuli. Nonetheless, research on the impact of CBD on cocaine addiction-like behaviors is limited and requires further clarification. This study tested the hypothesis that CBD administration inhibits the acquisition and retrieval of cocaine-induced conditioned place preference (CPP) in adult male and female C57BL6/J mice. We also ought to characterise a 5-day CPP protocol in these animals. METHODS: Male and female C57BL/6J mice were administered CBD (3, 10, and 30 mg/kg) 30 minutes before cocaine (15 mg/kg) acquisition of expression of CPP. RESULTS: Cocaine induces a CPP in both female and male mice in the 5-day CPP protocol. CBD failed to prevent the acquisition or retrieval of place preference induced by cocaine. CBD did not decrease the time spent on the side paired with cocaine at any of the doses tested in male and female mice, in either acquisition or expression of contextual memory. CONCLUSION: This study found no support for the hypothesis that CBD decreases reward memory involved in the formation of cocaine addiction. Further research is necessary to investigate the involvement of CBD in other behavioural responses to cocaine and other psychostimulant drugs. This study, however, characterised a 5-day CPP protocol for both female and male C57BL/6J mice.

3.
Acta Neuropsychiatr ; : 1-10, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982167

RESUMEN

OBJECTIVE: The transient receptor potential cation channel, subfamily V (vanilloid), member 1 (TRPV1) mediates pain perception to thermal and chemical stimuli in peripheral neurons. The cannabinoid receptor type 1 (CB1), on the other hand, promotes analgesia in both the periphery and the brain. TRPV1 and CB1 have also been implicated in learned fear, which involves the association of a previously neutral stimulus with an aversive event. In this review, we elaborate on the interplay between CB1 receptors and TRPV1 channels in learned fear processing. METHODS: We conducted a PubMed search for a narrative review on endocannabinoid and endovanilloid mechanisms on fear conditioning. RESULTS: TRPV1 and CB1 receptors are activated by a common endogenous agonist, arachidonoyl ethanolamide (anandamide), Moreover, they are expressed in common neuroanatomical structures and recruit converging cellular pathways, acting in concert to modulate fear learning. However, evidence suggests that TRPV1 exerts a facilitatory role, whereas CB1 restrains fear responses. CONCLUSION: TRPV1 and CB1 seem to mediate protective and aversive roles of anandamide, respectively. However, more research is needed to achieve a better understanding of how these receptors interact to modulate fear learning.

4.
Cannabis Cannabinoid Res ; 8(1): 24-33, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35984927

RESUMEN

Δ9-THC (the main active compound from Cannabis sativa) and related cannabinoids have been used as drugs of abuse and as medications. They induce a complex set of emotional responses in humans and experimental animals, consisting of either anxiolysis or heightened anxiety. These discrepant effects pose a major challenge for data reproducibility and for developing new cannabinoid-based medicines. In this study, we review and analyze previous data on cannabinoids and anxiety-like behavior in experimental animals. Systematic review and meta-analysis on the effects of type-1 cannabinoid receptor agonists (full or partial, selective or not) in rodents exposed to the elevated plus maze, a widely used test of anxiety-like behavior. Cannabinoids tend to reduce anxiety-like behavior if administered at low doses. THC effects are moderated by the dose factor, with anxiolytic- and anxiogenic-like effects occurring at low-dose (0.075-1 mg/kg) and high-dose (1-10 mg/kg) ranges, respectively. However, some studies report no effect at all regardless of the dose tested. Finally, motor impairment represents a potential confounding factor when high doses are administered. The present analysis may contribute to elucidate the experimental factors underlying cannabinoid effects on anxiety-like behavior and facilitate data reproducibility in future studies.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Humanos , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Prueba de Laberinto Elevado , Reproducibilidad de los Resultados , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Cannabinoides/farmacología
5.
Neuropharmacology ; 224: 109314, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36336070

RESUMEN

The transient receptor potential vanilloid type-1 (TRPV1) channels have been implicated in the modulation of aversive responses. The endocannabinoid anandamide acts as an endogenous TRPV1 agonist, exerting opposite functions at TRPV1 and type-1 cannabinoid receptors (CB1R). Here we tested the hypothesis that hippocampal TRPV1 modulates contextual fear memory retrieval and investigated the influence of the aversive stimulus intensity as well as the role of endocannabinoid signaling. Male C57BL/6J mice were tested for contextual fear memory after low-, moderate-, or high-intensity shock protocols. The selective TRPV1 blockers SB366791 (1-10 nmol) and 6-I-NC (2 nmol) were infused via intra-dorsal hippocampus before the retrieval test session. The local levels of endocannabinoids and Arc and Zif268 mRNAs, involved in synaptic plasticity and memory, were quantified. First, both TRPV1 blockers reduced memory retrieval in animals exposed to moderate or high (but not low) intensity training protocols. In the second series of results, the magnitude of the freezing responses positively correlated with the hippocampal anandamide levels; TRPV1 and CB1R were found co-localized in this brain region; and the CB1R antagonist, AM251, prevented the effects of SB366791. Thus, endocannabinoid signaling possibly mediates the effects of TRPV1 blockers. Finally, inhibition of memory retrieval by TRPV1 blockers increased Arc and Zif268 mRNAs and impaired fear memory reinstatement. In conclusion, the modulation of fear memories by dorsal hippocampal TRPV1 channels may depend on the aversive stimulus intensity and occur via anandamide/CB1 signaling. Moreover, TRPV1 blockers promote Arc and Zif268 transcription, with subsequent attenuation of aversive memory reinstatement.


Asunto(s)
Endocannabinoides , Miedo , Ratones , Animales , Masculino , Endocannabinoides/farmacología , Ratones Endogámicos C57BL , Hipocampo , Receptor Cannabinoide CB1 , Canales Catiónicos TRPV/metabolismo
6.
Behav Pharmacol ; 33(1): 2-14, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33136616

RESUMEN

The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Encéfalo , Trastornos Mentales , Canales Catiónicos TRPV/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Analgésicos/farmacología , Animales , Ansiolíticos/farmacología , Antidepresivos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Desarrollo de Medicamentos , Humanos , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/metabolismo , Trastornos Mentales/psicología , Canales Catiónicos TRPV/metabolismo
7.
Pharmacol Biochem Behav ; 206: 173193, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33933537

RESUMEN

Tardive dyskinesia (TD) is a side effect associated with the long-term use of certain antipsychotics. Considering the modulatory role of the endocannabinoid system upon dopaminergic neurotransmission, the present study tested the hypothesis that increasing endocannabinoid (anandamide and 2-arachidonoylglycerol) levels attenuates haloperidol-induced TD (vacuous chewing movements, VCMs) in male Wistar rats. The animals received administration of chronic haloperidol (38 mg/kg; 29 days) followed by acute FAAH (URB597, 0.1-0.5 mg/kg) or MAGL (JZL184, 1-10 mg/kg) inhibitors before VCM quantification. The underlying mechanisms were evaluated by pre-treatments with a CB1 receptor antagonist (AM251, 1 mg/kg) or a TRPV1 channel blocker (SB366791, 1 mg/kg). Moreover, CB1 receptor expression was evaluated in the striatum of high-VCM animals. As expected, haloperidol induced VCMs only in a subset of rats. Either FAAH or MAGL inhibition reduced VCMs. These effects were prevented by CB1 receptor antagonism, but not by TRPV1 blockage. Remarkably, CB1 receptor expression was increased high-VCM rats, with a positive correlation between the levels of CB1 expression and the number of VCMs. In conclusion, increasing endocannabinoid levels results in CB1 receptor-mediated protection against haloperidol-induced TD in rats. The increased CB1 receptor expression after chronic haloperidol treatment suggests a counter-regulatory protective mechanism.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Endocannabinoides/metabolismo , Haloperidol/efectos adversos , Animales , Antipsicóticos/efectos adversos , Ácidos Araquidónicos/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/metabolismo , Endocannabinoides/farmacología , Glicéridos/farmacología , Masculino , Masticación/efectos de los fármacos , Alcamidas Poliinsaturadas/farmacología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Canales Catiónicos TRPV/metabolismo , Discinesia Tardía/tratamiento farmacológico , Discinesia Tardía/metabolismo
8.
Naunyn Schmiedebergs Arch Pharmacol ; 394(6): 1143-1152, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33471153

RESUMEN

Cocaine addiction is a severe mental disorder for which few treatment options are available. The underlying mechanisms include facilitation of monoamine-neurotransmission, particularly dopamine. Here, we tested the hypothesis that the monoamine stabilizers, (-)-OSU6162 ((3S)-3-(3-methylsulfonylphenyl)-1-propylpiperidine) and aripiprazole (7-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butoxy]-3,4-dihydro-1H-quinolin-2-one), prevent cocaine-induced behaviors. Male Swiss mice received injections of (-)-OSU6162 or aripiprazole and cocaine and were tested for cocaine-induced hyperlocomotion, locomotor sensitization, and acquisition and expression of conditioned place preference (CPP). The increase in the distance traveled induced by cocaine (20 mg/kg) was prevented by pretreatment with aripiprazole (1 and 10 mg/kg), whereas (-)-OSU6162 (3 mg/kg) exerted a minor effect. Aripiprazole, however, also impaired spontaneous locomotion. Neither (-)-OSU6162 nor aripiprazole interfered with the locomotor sensitization and expression of CPP induced by cocaine (15 mg/kg). (-)-OSU6162 (3 mg/kg), but not aripiprazole, prevented the acquisition of CPP induced by cocaine (15 mg/kg). (-)-OSU6162 exerts a minor effect in reducing cocaine-induced stimulatory activity and context-related memories, which are responsible for triggering drug seeking. Further studies are required to establish whether (-)-OSU6162 could be a candidate drug for the treatment of cocaine addiction.


Asunto(s)
Aripiprazol/farmacología , Cocaína/farmacología , Locomoción/efectos de los fármacos , Piperidinas/farmacología , Animales , Aripiprazol/administración & dosificación , Conducta Animal/efectos de los fármacos , Cocaína/administración & dosificación , Condicionamiento Psicológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Masculino , Ratones , Piperidinas/administración & dosificación
9.
Epilepsy Behav ; 121(Pt B): 106832, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31839498

RESUMEN

This review focuses on the possible roles of phytocannabinoids, synthetic cannabinoids, endocannabinoids, and "transient receptor potential cation channel, subfamily V, member 1" (TRPV1) channel blockers in epilepsy treatment. The phytocannabinoids are compounds produced by the herb Cannabis sativa, from which Δ9-tetrahydrocannabinol (Δ9-THC) is the main active compound. The therapeutic applications of Δ9-THC are limited, whereas cannabidiol (CBD), another phytocannabinoid, induces antiepileptic effects in experimental animals and in patients with refractory epilepsies. Synthetic CB1 agonists induce mixed effects, which hamper their therapeutic applications. A more promising strategy focuses on compounds that increase the brain levels of anandamide, an endocannabinoid produced on-demand to counteract hyperexcitability. Thus, anandamide hydrolysis inhibitors might represent a future class of antiepileptic drugs. Finally, compounds that block the TRPV1 ("vanilloid") channel, a possible anandamide target in the brain, have also been investigated. In conclusion, the therapeutic use of phytocannabinoids (CBD) is already in practice, although its mechanisms of action remain unclear. Endocannabinoid and TRPV1 mechanisms warrant further basic studies to support their potential clinical applications. This article is part of the Special Issue "NEWroscience 2018".


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Epilepsia , Animales , Cannabidiol/uso terapéutico , Cannabinoides/uso terapéutico , Dronabinol , Epilepsia/tratamiento farmacológico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...